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1 Introduction

The concept of returns to scale has longbeen central to the studyof production andfirmdynamics.
Since the foundational work of Charles W. Cobb and Paul H. Douglas (1928), the assumption of a
(quasi-)concave production function—such as the Cobb-Douglas or Constant Elasticity of Substitu-
tion (CES) forms—has been a cornerstone inmacroeconomic models, shaping our understanding
of economic growth, resource allocation, and business cycles. However, our study documents
a profound shift in the shape of corporate production function since the 1980s, as it evolves to-
ward a sigmoidal (convex-concave) structure. This shift, marked by the increasing prominence
of the convexity component, challenges the traditional concave production function assumption
and suggests a fundamental reconfiguration in how firms produce, invest, andmanage earnings dy-
namics. Our analysis reveals that this shift is not confined to a specific industry or country but
is instead a widespread phenomenon observed across multiple countries and industries, which
suggests a global transformation in the production landscape.

We begin by documenting a key motivating fact: the share of unprofitable firms has risen sig-
nificantly over the past several decades. Using data on publicly traded firms in the U.S., we show
that the proportion of firms with negative net earnings increased from 18.3% in 1980 to 54.4% in
2019. This trend is not confined to a single industry in the U.S.; similar upward patterns are ob-
served across industries and economies worldwide. We interpret this fact through the lens of
Q-theory, and show that if the production function has become sufficiently convex, firms could
have negative earnings – an equilibrium outcome that would not occur under a strictly concave
production function. Based on this, we hypothesize that the long-term increase in unprofitable
firms is driven by structural changes in the shape of the corporate production function.

Our analysis examines the long-term evolution of the corporate production function. Our
baseline study utilizes firm-level data from publicly traded U.S. companies and extends the inves-
tigation to multiple advanced and emerging economies. More specifically, employing a Bayesian
Markov Chain Monte Carlo (MCMC) estimation method with minimal structural assumptions on
the production function, we uncover two key findings. First, we provide empirical evidence that
the corporate production function consists of two distinct regions. Before transitioning into the
usual concave, decreasing returns-to-scale phase, firms experience an initial convex region char-
acterized by increasing returns to scale. In our baseline analysis using U.S. data, the estimated
average degree of returns to scale in this convex region is 1.11, significantly above 1.0 at the 5% sig-
nificance level for most periods, while the estimate for the concave region is 0.99 with borderline
significance. In other words, the corporate production function follows a convex-concave shape
rather than a purely concave one. Second, we identify a significant transformation in the pro-
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duction function’s shape since 1980. In our baseline analysis, the estimated convexity-concavity
threshold was 5.02 thousand dollars in 1980; by 2021, it had surged to 1.31 million dollars, mark-
ing a remarkable 261-fold increase. Over the same period, the average returns-to-scale rose from
0.97 to 1.07, indicating that modern firms now operate under an extended phase of increasing re-
turns to scale, requiring a substantially larger operational scope before diminishing returns set in.
This shift remains robust across alternative functional specifications and is consistently observed
across various industries and economies. Notably, the Healthcare, Manufacturing, and Consumer
Nondurables sectors exhibit particularly strong patterns, as do economies such as China, India,
and Australia.

Building on this empirical evidence, we conduct a quantitative exercise to explore the broader
economic implications of this evolving production function. By using an otherwise standard firm-
dynamics model a la Hugo A. Hopenhayn (1992), we simulate firm dynamics under a convex-
concave production function with capital adjustment costs, we illustrate how the shift toward
convexity impacts firmbehavior andmarket outcomes. Our results suggest that the rising share of
firms with negative net earnings can be attributed to increased capital investment among highly
productive firms with small capital stocks striving to reach profitable scales. These firms, aiming
for growth, often incur short-term losses due to the substantial upfront costs of capital accumu-
lation in a more convex production environment. This quantitative exercise highlights how the
transformation in production function shape contributes to a higher prevalence of unprofitable
firms, a trend consistent with our empirical findings.

Finally, we explore how changes in the shape of the production function influencemarkup es-
timates, with a particular focus on disentangling the effects of technological change from those of
rising market power. Building on the findings of Jan De Loecker, Jan Eeckhout and Gabriel Unger
(2020), who document a sharp increase in aggregate markups—from 21% above marginal cost to
61% in recent years—we argue that much of this observed rise may be attributed to technologi-
cal advancements rather than to a pure increase in corporate market power. Their methodology,
which assumes constant returns to scale and does not fully account for shifts in production tech-
nology, may conflate technological progress with changes in firm-level pricing behavior. This
concern has been echoed by James Traina (2021), who show that after adjusting for marketing
and management expenses, public firm markups increased only modestly and remained within
historical variation. Furthermore, Steve Bond, ArshiaHashemi, GregKaplan and Piotr Zoch (2021)
argue that when only revenue data are available, output elasticities cannot be non-parametrically
identified under market power, complicating the interpretation of rising markups. Additionally,
Steve Bond and Giulio Gottardo (2024) demonstrate that the observed markup increase reported
by De Loecker, Eeckhout and Unger (2020) is heavily influenced by the use of arithmetic averages;
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when the harmonic mean is employed, aggregate markups appear relatively stable over time. In
ourmodel-based simulations, we show that evenwhenall observed changes in the convexity of the
revenue production function stem solely from technological improvements—absent any variation
in market power—the estimated average markup still rises over time. Notably, our model high-
lights that although technological factors explain a significant portion of the aggregate markup
increase, they cannot fully account for the empirical patterns observed in the data. Specifically,
empirical evidence indicates that the upward trend in markups began earlier, around the 1980s,
and reached higher levels—up to 1.60—compared to the 1.40 ceiling suggested by our simulations.
Moreover, De Loecker, Eeckhout and Unger (2020) document that the sharpest markup increases
occur at the upper tail of the distribution, with the 90th percentile reaching levels as high as 2.5,
contrasting with the uniform percentile trends implied by our technology-driven model. These
discrepancies, along with evidence of early-onset markup increases and sharper distributional
shifts, underscore the role of additional drivers such as regulatory changes, market concentra-
tion, and strategic firm behavior. Nonetheless, our results provide robust evidence that techno-
logical forces—manifested in increased returns to scale and reduced variable costs—are a central
driver of the long-run rise in markups, challenging the notion that market concentration alone is
responsible for this trend.

Related literature Our paper is closely related to four branches of literature. First, our work
contributes to the growing literature on the evolving characteristics of firms in the 21st century.
De Loecker, Eeckhout and Unger (2020) document a substantial increase in market power among
U.S. public firms since 1980, while Gerard Hoberg and Gordon Phillips (2021) show that firms have
significantly expanded their scope and scale of operations over the past 30 years. Additionally,
David Autor, David Dorn, Lawrence F. Katz, Christina Patterson and John Van Reenen (2020) high-
light the rising dominance of superstar firms that lead their markets, and both Callum Jones and
Thomas Philippon (2016) and German Gutierrez and Thomas Philippon (2017) provide evidence
of declining competition and investment among U.S. firms. Our work complements this body
of research by documenting another key trend of rising unprofitable companies in the changing
landscape of modern firms.

Second, ourpaper contributes to theongoingdebate on rising corporatemarket power. DeLoecker,
Eeckhout and Unger (2020) document a sharp increase in aggregate markups—from 21% above
marginal cost to 61% in recent years. However, this trend has been challenged by several stud-
ies. For example, Traina (2021) argue that once marketing and management expenses are prop-
erly accounted for, the rise in public firmmarkups is modest and within historical bounds. Bond
et al. (2021) highlight that when only revenue data are available, output elasticities are not non-
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parametrically identified under market power. Bond and Gottardo (2024) further show that the
increase reported in De Loecker, Eeckhout and Unger (2020) is largely driven by the use of arith-
metic averages; when the harmonic mean is used, aggregate markups appear more stable. Our
contribution is to demonstrate that changes in technology—rather than increases inmarket power
per se—can also generate the observed rise in markups.

Third, our paper aligns with the recent literature on increasing returns-to-scale. Empirical
and theoretical studies have documented substantial variation in returns to scale across sectors
and firm sizes. For instance, Chengyu Gao and Matthias Kehrig (2021) report an average return
to scale of 0.96 in U.S. manufacturing, with variability across four-digit industries. Similarly, Dim-
itrije Ruzic and Kwan Yeung Ho (2019) observe a decline in returns to scale in U.S. manufacturing,
suggesting structural shifts in production technology or market conditions. European studies,
such asDanial Lashkari,MaxBauer andVianneyBoussard (2019) on France, also reveal significant
heterogeneity in returns to scale, particularly across firms with different levels of IT investment,
which affect the elasticity of output relative to inputs. In addition, Joel Kariel, Anthony Savagar
and JoaoMainente (2022) offers a comprehensive analysis of returns to scale across sectors in the
UK, finding slightly above-one returns-to-scale estimates, indicating increasing returns-to-scale
on average. Our contribution is to provide complementary global evidence by using Bayesian
MCMC approach.

Finally, ourwork contributes to the production function estimation literature. Previous studies
have focused on estimating firm-level TFP by developing variousmethods to address simultaneity
and selection biases (e.g., G Steven Olley and Ariel Pakes, 1996; James Levinsohn and Amil Petrin,
2003; Jeffrey M Wooldridge, 2009; Daniel A Ackerberg, Kevin Caves and Garth Frazer, 2015). In
contrast to earlier work, our Bayesian MCMC approach offers greater flexibility, enabling us to
capture time-series changes in production functions dynamically. Moreover, our firm-level anal-
ysis complements prior country-level estimates of aggregate production functions (e.g., Robert
Solow, 1957; Paul Samuelson, 1979; Robert E. Hall and Charles I. Jones, 1999), providing new in-
sights into micro-level production dynamics. In addition, our paper connects to the literature on
convex-concave production functions. This structure is especially relevant in development eco-
nomics, where economies transition from low levels of development with increasing returns to
higher levels marked by diminishing returns. Foundational theoretical contributions include Zvi
Griliches (1957), William Ginsberg (1974), and A. K. Skiba (1978), among others. Subsequent stud-
ies have applied convex-concave production functions to explain poverty traps, where economies
are stuck at low income levels (e.g., Costas Azariadis and Allan Drazen, 1990; Philippe Askenazy
and Cuong Le Van, 1999; Ken-Ichi Akao, Takashi Kamihigashi and Kazuo Nishimura, 2011). In
these models, whether an economy converges to a high or low steady-state equilibrium depends
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on its initial capital per capita. While much of this research is theoretical and focuses on country-
level analysis, our study provides the first firm-level evidence of the increasing significance of the
initial convex phase in production functions over time.

Layout The rest of our paper is organized as follows. Section 2 outlines the data sources and
variables utilized in our analysis. Section 3 introduces the motivating fact and our interpretation
through the lens of Q-theory. Section 4 details our Bayesian methodology for empirical analy-
sis and summarizes our key findings regarding shifts in the production function of public firms
globally. In Section 5, we employ a standard firm dynamics model to assess the quantitative per-
formance of our story and explore its implications on corporate market power. Finally, Section 6
provides concluding remarks.

2 Data and Variable Construction

2.1 U.S. Evidence

The dataset used in our empirical analysis for the U.S. primarily comes from Compustat, which
offers comprehensive balance sheet data for publicly listed companies. We focus on firms with a
foreign incorporation code of “USA” and exclude financial institutions (SIC 6000-6999) and regu-
lated utilities (SIC 4900-4999) in our baseline analysis. Moreover, we exclude firms with missing
or negative values for total assets or sales.

All variable definitions adhere to standard practices in corporate finance literature. Specifi-
cally, a firm’s output is defined as net sales or turnover (Compustat data item SALE), and firm size
is measured as the natural logarithm of total assets (Compustat data item AT). Net earnings are
captured by Compustat data item NI, which reflects a firm’s income or loss after accounting for
all revenues, gains, expenses, and losses. Gross profit (Compustat data item GP), in contrast, only
subtracts the cost of goods sold (Compustat data item COGS) from total revenue (Compustat data
item REVT). Firm age is determined based on the first year the firm appears in Compustat.

To account for the growing importanceof intangible assets, a firm’s total capital stock is defined
as the sum of tangible capital (Compustat data item PPENT) and intangible capital, measured as in
Ryan H. Peters and Lucian A. Taylor (2017). Thus, investment includes both tangible and intangi-
ble capital. Specifically, total investment I is calculated as I = Ktangible − Ktangible

−1 + DP − AM +

XRD + 0.3 × SG&A, where the first two terms represent the growth of physical capital stock, DP
is depreciation and amortization (Compustat data item DP), AM is amortization (Compustat data
item AM), XRD denotes R&D costs (Compustat data item XRD), and SG&A represents net selling,
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general, and administrative expenses (net SG&A). This net SG&A is calculated by excluding data
items XRD and RDIP (In Process R&D Expenses) from data item XSGA in Compustat, as XSGA in
Compustat often includes R&D costs.1 We set organization capital investment to 30% of SG&A ex-
penditures, following Andrea L. Eisfeldt and Dimitris Papanikolaou (2013) and Peters and Taylor
(2017).

For industry classification, weuse the Fama-French ten-industry approach.2 For industry-level
analysis, financial institutions (SIC 6000-6999) and regulated utilities (SIC 4900-4999) are rein-
tegrated into the dataset. Additionally, all initial public offerings (IPO)-related information is
sourced from Jay Ritter’s publicly accessible data.3

2.2 Global Evidence

Forour global analysis, all country-level information is obtained from thePennWorldTable (PWT).
We use output-side constant-price real GDP divided by total population to capture cross-country
differences in real GDP per capita and use the price level of capital stock to account for changes
in the cost of capital formation due to technical advancements or inflation.

For international firms, data is drawn from the Compustat Global dataset, where we apply sim-
ilar data-cleaning criteria as used for U.S. firms. The Compustat Global dataset provides extensive
firm-level balance sheet data for publicly listed companies in over 80 countries, collectively cov-
ering more than 90% of global market capitalization. Given that our Bayesian method requires
substantial data, we set a minimum threshold for firm-year observations. Specifically, a country
is included in our sample if it has at least 10,000 firm-year observations. Based on this criterion,
the countries included in our international analysis are Australia, Canada, China (including Hong
Kong and Taiwan), France, Germany, India, Japan, Korea, Sweden, Thailand, and UK.

All variable definitions remain consistent with those used in our analysis of the U.S. dataset.
The only distinction here is that we need to construct the intangible capital stock independently.
Following Peters and Taylor (2017), we measure intangible capital stock using the perpetual in-
ventory method. To begin with, we estimate the initial intangible capital stock with the following

1If XSGA is missing, we set SG&A to zero. Additionally, if XRD exceeds XSGA, we set SG&A equal to XSGA.
2The definitions for these industries are as follows: Consumer Nondurables (SIC 0100-0999, 2000-2399, 2700-2749,

2770-2799, 3100-3199, 3940-3989); Consumer Durables (SIC 2500-2519, 2590-2599, 3630-3659, 3710-3711, 3714-3714, 3716-3716,
3750-3751, 3792-3792, 3900-3939, 3990-3999); Manufacturing (SIC 2520-2589, 2600-2699, 2750-2769, 2800-2829, 2840-2899,
3000-3099, 3200-3569, 3580-3621, 3623-3629, 3700-3709, 3712-3713, 3715-3715, 3717-3749, 3752-3791, 3793-3799, 3860-3899);
Oil, Gas, and Coal Extraction and Products or Energy (SIC 1200-1399, 2900-2999); Business Equipment (SIC 3570-3579, 3622-
3622, 3660-3692, 3694-3699, 3810-3839, 7370-7372, 7373-7373, 7374-7374, 7375-7375, 7376-7376, 7377-7377, 7378-7378, 7379-7379,
7391-7391, 8730-8734); Telephone and Television Transmission (SIC 4800-4899);Wholesale, Retail, and Some Services (SIC 5000-
5999, 7200-7299, 7600-7699); Healthcare, Medical Equipment, and Drugs (SIC 2830-2839, 3693-3693, 3840-3859, 8000-8099);
Utilities (SIC 4900-4949); and Others.

3https://site.warrington.ufl.edu/ritter/ipo-data/
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equation:

K Intangible
0 =

I Intangible
0

g + δIntangible − π
(1)

In the equationabove, I Intangible
0 represents thefirm’s investment inorganizational capital in the

first sample year. Consistent with our previous approach, we set organizational capital investment
to 30% of SG&A. The term g denotes the industry-level average growth rate of SG&A investments,
using the first 2-digits of the NAICS industry code to classify the industry within each country. The
termπ represents the growth rate of the capital stock price, accounting for changes in the real cost
of capital investment. For the intangible depreciation rate, δIntangible, weuse 20% followingEisfeldt
and Papanikolaou (2013). Once the initial intangible capital is obtained, we iterate forward using
the depreciation rate, SG&A expenses, and investment price index with the following equation:

K Intangible
t+1 = (1 − δIntangible)K Intangible

t πt+1 + I Intangible
t+1 (2)

3 Facts and Interpretation

3.1 Facts

To start, we document the increasing prevalence of unprofitable firms as a motivation fact. Fig-
ure 1 presents our baseline analysis of the time-series trend in the proportion of firms reporting
negative net incomes. For each year, we calculate the fraction of firms with negative net incomes
by dividing the number of such firms by the total number of firms in our sample. We use two
distinct measures for this calculation: one weighted by each firm’s industry output share and an
unweighted measure.

[Figure 1 here]

As shown in Graph (a) of Figure 1, there is a persistent increase in the share of firms with
negative earnings in both measures. For the unweighted indicator (i.e., the blue solid line), 18.3%
of firms reported negative net incomes in 1980, a proportion that climbed substantially to 54.4%by
2019. Similarly, the weighted measure (i.e., the orange solid line) reveals an increase from 14.8%
in 1980 to 37.4% in 2019. Although there was a significant drop around the year 2000, this upward
trend in unprofitable firms has strengthened in recent years. With these two simple measures,
our analysis reveals a long-term rise in the proportion of unprofitable public firms in the U.S.,
which signals a fundamental shift in the earnings landscape. This trend suggests that (seemingly)
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unprofitability is no longer a rare or temporary phenomenon for public companies but rather a
persistent feature that warrants further exploration.

robustness checks We perform several robustness checks to confirm the reliability of our find-
ings. First, we show that theobservedupward trend in the shareof unprofitablefirms is not limited
to a specific industry. Figure A1 in the appendix presents the proportion of firmswith negative net
incomes across the Fama-French ten industries. As illustrated, the fraction of unprofitable firms
has steadily increased in most industries, with particularly notable rises in the Healthcare sector
(from 20% to over 80%) and the Business Equipment sector (from just below 20% to 60%). In con-
trast, this trend is less pronounced in the Utilities sector, and it fluctuates considerably over time
in sectors such as Energy andOther. Some sectors, includingManufacturing and Telephone and Tele-
vision Transmission, saw peaks around the year 2000, followed by gradual declines. Despite these
variations across industries, the general upward trend in the share of unprofitable firms remains
consistent and is not confined to any single sector.4 This broad-based increase underscores the
pervasiveness of unprofitability across various segments of the economy and suggests a structural
shift affecting multiple industries.

Next, we investigate whether the rising trend in unprofitable firms is influenced by an increas-
ing proportion of younger firmswithin the Compustat dataset. The presence ofmore young public
firms today, which generally have lower net earnings, could potentially drive the observed in-
crease in unprofitable firms. To address this concern, we examine two age-related indicators in
Figure A2 in the appendix. The first indicator, shown by the yellow line, is the average firm age.
This measure reveals an upward trend over time, indicating that public firms have been aging on
average, with a larger proportion of mature firms in recent years. This finding suggests that the
public firms are becoming older, not younger. The second indicator, representedby the green line,
is a proxy for the proportion of young firms, defined as the share of firms that are five years old or
younger. Although this indicator exhibits some fluctuations, it does not show a clear upward trend
over time. These findings imply that the observed increase in the share of unprofitable firms is not
driven by changes in the age distribution of public firms. Instead, it appears that the trend towards
unprofitability is widespread and persists even as the public firm population becomes older, un-
derscoring that this phenomenon is not merely an effect of having more young, early-stage firms
in the dataset.

Lastly, we investigate whether the observed pattern of rising unprofitability is concentrated
within specific stock exchanges, as listing requirements—particularlyfinancial criteria—vary across

4For further context, Table A2 in the appendix provides a list of the top 50 companies bymarket capitalization with
negative net earnings in 2019 acrossmultiple industries, includingAgriculture, Manufacturing, Retail Trade, and Services.
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exchanges. Figure A3 in the appendix illustrates this analysis by displaying the proportion of firms
with negative net earnings on the New York Stock Exchange (NYSE), the National Association of
Securities Dealers Automated Quotations (NASDAQ), and other U.S. exchanges. The red line rep-
resents the NYSE, where the share of unprofitable firms grew from 10.5% in 1970 to 31.4% in 2019.
In contrast, the green line for NASDAQ shows amore pronounced increase, with the proportion of
unprofitable firms rising from 15.5% to 63.7% over the same period. These differences highlight
some heterogeneity across exchanges; firms listed on NASDAQ, for example, have generally ex-
hibited a higher incidence of unprofitability than those on the NYSE. Despite these variations, our
overall conclusion regarding the secular rise in the fraction of unprofitable firms remains robust
across different stock exchanges. This consistent trend suggests that the increase in unprofitabil-
ity is a broad-based phenomenon affecting firms acrossmultiple exchanges, regardless of varying
listing standards.

gross v.s. net Interestingly, this upward trend is much less pronounced when we focus on the
proportion of firmswith negative gross profits. As shown by the two dotted green and purple lines
in Graph (a) of Figure 1, although the percentage of firmswith negative gross profits has risen over
the past decades, their overall economic impact remains relatively limited. Specifically, under the
unweighted measure, the share of firms with negative gross profits increased from 1.7% in 1980
to 10.2% in 2019. For the weighted measure, this figure rose from 1.3% to 3.3% over the same
period. Therefore, despite the challenges many firms face, reflected in negative or unusually low
net earnings, most public firms still report positive gross profits.

The divergence between net earnings and gross profits is crucial for understanding the under-
lying mechanisms at play. As we elaborate in the following section, in theory, this gap between
profitability measures could result from a fundamental shift in the shape of the production func-
tion. Intuitively, when a firm reports positive gross profits but negative net earnings, it indicates
that while its core operations remain profitable, significant resources are being allocated toward
scaling thebusiness. Under a concaveproduction function, this patternwouldbe rare, asmarginal
returns on investment diminish as the firm expands. However, in the presence of a convex pro-
duction function, profitability increaseswith firm size, implying that a firm that is profitable today
could achieve even greater profitability as it grows. As a result, firms in this environmentmay pri-
oritize aggressive investment and expansion, even at the expense of current earnings.5

5Moreover, the widening gap between gross profits and net earnings provides insight into the ongoing debate on
firm-level markup measurement. While De Loecker, Eeckhout and Unger (2020) document a significant rise in corpo-
rate markups over recent decades, other studies, such as Traina (2021), present conflicting findings. This discrepancy
largely stems from differences in themeasurement of input costs. Traina (2021) incorporate operating expenses, while
De Loecker, Eeckhout and Unger (2020) focus on the cost of goods sold. Notably, operating expenses includemarketing
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evidence from IPO We extend our analysis by investigating trends in IPO performance. Graph
(b) of Figure 1 displays the fraction ofU.S. firmswithnegativenet earnings at the timeof their IPOs.
Following standard practice in the IPO literature, corporate earnings are measured based on the
most recent twelvemonths before going public. Then the fraction is simply computed by dividing
the number of IPO firms reporting net losses by the total number of firms that went public in a
given year. The solid blue line in Graph (b) illustrates this trend over time, which reveals a clear
upward trajectory: while only 24% of firms had negative net earnings at IPO in 1980, this figure
has surged to 77% by 2019.

Importantly, this rise in unprofitable IPOs is not solely attributable to the expansion of the IT
sector. The red dashed line in Graph (b) of Figure 1 tracks the share of IT-related IPOs over time.
Before 2000, the increase in unprofitable IPOs appeared to be largely driven by the growing pres-
ence of IT firms. However, after 2000, this relationship weakens significantly. While the propor-
tion of IPO firms with negative earnings has continued to climb, the share of IT-related IPOs has
remained relatively stable. One possible explanation is the rise of high-growth, non-traditional
firms outside the IT sector—such as Tesla and Peloton—that have also pursued IPOs despite report-
ing losses. This pattern aligns with our earlier findings in Figure A1, which document a sustained
increase in the share of unprofitable firms across various industries. Collectively, these results
underscore the broad-based nature of our documented trend, suggesting that IPO unprofitabil-
ity has become a widespread phenomenon across many sectors, rather than being concentrated
within the technology industry.

global evidence There is a possibility that data on U.S. publicly traded firms may be subject to
selection bias, suggesting that the observed patterns could be specific to the U.S. To address this
concern, we extend our previous analysis by using a global firm-level dataset. The main findings
are presented inGraph (c) of Figure 1, which displays the time-series trends in the fraction of firms
reporting negative net earnings and negative gross profits globally. As in our previous analysis,
we provide two versions of eachmeasure: oneweighted by the relative industry importance of the
firm and an unweighted series. The solid lines in Graph (c) reveal a global increase in the share of
firms with negative net earnings across both measures. Specifically, in the unweighted series, the
proportion of firms with negative net income rose from 2.7% in 1987 to 29.6% in 2019, while the
weighted measure similarly increased from 1.1% to 26.4% over the same period. In contrast, the
rise in firms with negative gross profits is much less pronounced, as shown by the dashed lines

and management costs in addition to production costs. We argue that firms increasingly treat sales and marketing ex-
penditures as long-term investments in customer acquisition to strengthen future market power. Consequently, these
expenses shouldbe excluded fromcurrentmarkup calculations to provide amore accurate assessment ofmarket power
dynamics and profitability potential. We put more discussions in Section 5.3.
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in the same graph. For instance, the unweighted measure for firms with negative gross profits
increased from 0.8% in 1987 to 5.5% in 2019, while the weighted measure rose from 0.2% to 4.3%.
These findings confirm that the trend observed among U.S. firms is not unique but rather part of
a broader, global phenomenon.

Another noteworthy finding is the cross-sectional relationship between a country’s real GDP
per capita and the prevalence of firms reporting negative net earnings. Graph (d) of Figure 1
presents a binned scatter plot of log real GDP per capita against the share of unprofitable firms
by country. The fitted linear trend is represented by the blue dashed line. The data reveal a sig-
nificant positive relationship, which indicates that firms in wealthier countries are more likely to
report earnings losses. This cross-country pattern suggests that the rise in unprofitable firms is
not solely driven by low institutional quality or weak corporate governance. Instead, both supply-
and demand-side factors appear to play a crucial role. On the supply side, wealthier economies
tend to have a higher concentration of high-tech and e-commerce firms, which heavily rely on in-
tangible assets and operate under increasing returns to scale. These firms often incur substantial
upfront costs to develop user networks and infrastructure, leading to short-term earnings losses
as they strive to establish market dominance. On the demand side, emerging economies gener-
ally have less developed financial markets and stricter IPO regulations, resulting in higher listing
standards on financial terms. Consequently, firms with negative net earnings are less likely to re-
ceive IPO approval in these countries. Taken together, these supply- and demand-side factors help
explain the observed positive cross-country relationship in the prevalence of unprofitable firms.

3.2 A Q-theory Interpretation

3.2.1 Some clarifications on degree of returns-to-scale and investment

We now turn to the theoretical explanation of the underlying drivers behind the rise in unprof-
itable firms. To clarify, we begin by defining our concepts of returns to scale and capital invest-
ment. Consider a firm that utilizes capital Kt and labor Lt to produce a non-storable output Ỹt,
which is sold at a market price of P̃t at time t. The firm’s quantity production function is specified
as

Ỹt = Ãt

(
Kγt

t L1−γt
t

)st

where Ãt represents productivity at time t. Here, the parameter 0 < st ≤ 1 reflects the degree of
returns to scale in quantity output production, while 0 < γt < 1 denotes the relative factor shares
of labor and capital.
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Changes in returns to scale, denoted by st, can originate from variations in either fixed costs or
marginal costs or both. The intuition behind this argument is that as output expands, fixed costs
are spread over more units and marginal costs decline due to scale efficiencies, both of which
lower average cost. Consequently, total cost increases less than proportionally with output, satis-
fying the condition for increasing returns to scale. Details are provided in Appendix B.1.

The inverse demand function for the firm’s output is given by

P̃t =

(
Ỹt

H̃t

)− 1
εt

where H̃t > 0 positions the demand curve, and εt ≥ 1 is the price elasticity of demand.
As shown in Appendix C.1, given the wage rate wt, by optimizing labor choice Lt, we can ex-

press maximized sales incomes Yt as:

Yt ≡ P̃tỸt = Z̃1−αt
t Kαt

t

where Z̃t is a function of Ãt, H̃t, and wt. The returns to scale αt for sales Yt with respect to capital
Kt is defined as:

αt ≡
γtst

(
1 − 1

εt

)
1 − (1 − γt) st

(
1 − 1

εt

) > 0 (3)

where αt is our definition of return-to-scale throughout our analysis. Later, we provide a detailed
explanation of how αt is measured in the data and discuss its structural changes over time.

Our benchmark scenario considers a fully competitive firm (εt = ∞) operating under constant
returns to scale in production (st = 1) with stable factor shares (γt = γ̄). In this case, αt = 1,
signifying a constant returns-to-scale production function for sales income or output measured
in dollars. We use αt as the return-to-scale parameter in our analysis because the typical cross-
country dataset does not allow us to separately observe quantity and price components. Thus,
if we observe changes in αt, they may stem from multiple factors. Our current approach does
not pinpoint the exact source, so variations in our estimated αt could reflect shifts in corporate
market power εt (De Loecker, Eeckhout and Unger, 2020), adjustments in the quantity returns-
to-scale parameter st, or changes in factor shares γt (Loukas Karabarbounis and Brent Neiman,
2014). For example, if a firm has some degree of monopoly power (εt < ∞) or operates under
decreasing returns to scale in quantity (st < 1), then αt < 1, making sales a concave function
of capital and generating positive economic rents. Conversely, if the firm experiences increasing
returns to scale in quantity production (st > 1) and grows large enough, we may observe αt > 1
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in the data, with sales then exhibiting a convex relationship with capital stock. In other words, αt

could be larger than 1 even in the presence ofmonopoly power (εt < ∞). We putmore discussions
on the implications of our approach on corporate market power in Section 5.3.

In this analysis, capital comprises both intangible and tangible assets. Thus, the term “invest-
ment” here may include physical capital investment as well as expenditures on customer capital,
organizational capital, and other intangible assets. This approach is consistent with our empirical
method, where we do not differentiate between tangible and intangible capital stocks and their
corresponding investments. Additionally, we assume capital is the firm’s only inflexible input,
while all other inputs, such as labor and materials, are frictionless. Consequently, it does not af-
fect our results on estimating αt whether we use sales (i.e., Yt) or value-added (Yt − wtLt) as our
output measure.

3.2.2 The economics behind negative earnings

Now we turn to a Q-theory interpretation on why firms could make negative earnings and un-
der what conditions. Consider a infinite-horizon continuous-time economy with exogenously-
determined interest rate {rt}∞

t=0. Let the sales of a single firm be given by Yt = F(Kt) and the
increase per time unit in the firm’s capital stock is given by K̇t = It − δKt with K0 > 0. I is gross
fixed capital investment per time unit and δ > 0 is the rate of depreciation of capital. There are
adjustment costs associated with investment, and they are denoted by G(I, K). The installation
cost function, G, is a C2 function satisfying the usual assumptions, i.e., G(0, K) = 0, GI(0, K) = 0,
GI I(I, K) > 0, GK(I, K) ≤ 0, for all pairs (I, K) with I ≥ 0 and K ≥ 0. At the cost of some
minor and uninteresting loss of generality, we further assume that G is a ( jointly) convex func-
tion of (I, K) and homogeneous of degree 1 in its respective arguments. It means that GKK ≥ 0,
GI IGKK − (GIK)

2 ≥ 0, and G(I, K) = GI(I, K)I + GK(I, K)K, for all (I, K). Examples of G func-
tions satisfying these assumptions are the widely-used quadratic adjustment cost function such
as G(I, K) = 1

2 β I2

K , where β > 0 denotes the degree of investment inflexibility.
Let the net earnings at time t be denoted πt, and the gross profit at time t be Rt, then we have

πt ≡ F(Kt)− G(It, Kt)− It

Rt ≡ F(Kt)

In this way, the decision problem, as seen from time 0, is the following: given the expected
evolution of interest rates, {rt}∞

t=0, choose an investment plan {It}∞
t=0 so as to maximize the firm’s

market value, i.e., the discounted value of the future stream of expected net earnings:
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max
{It}∞

t=0

V0 =

ˆ ∞

0
πte−

´ t
0 rτdτdt (4)

subject to the constraints mentioned previously.
With thismodel setup, we canhave the following lemmaon the relationship between the shape

of production function F(Kt) and the sign of net earnings πt.

Lemma 1. The equilibrium net earnings of the firm πt at time t can be written as

πt = A(Kt) + B(It, Kt) + (FKKt − GKKt)− (1 + GI)m
(ˆ ∞

t
e−
´ s

t rτdτ [FKs Ks − GKs Ks] ds
)

Kt (5)

where

A(K) ≡ F(K)− FK(K)K (6)

B(I, K) ≡ GI(I, K)I + GK(I, K)K − G(I, K) (7)

and m is some strictly increasing function. With convexity degree of F being sufficiently large, πt < 0 for
small K.

The proof is presented in Appendix C.2. Here, we focus on the underlying intuition. We as-
sume that the adjustment cost function is homogeneous of degree 1, meaning that B(I, K) ≡
GI(I, K)I + GK(I, K)K − G(I, K) = 0. This assumption allows us to simplify the firm’s net earnings
as follows:

π = A(K) + (FKK − GKK)︸ ︷︷ ︸
current benefits

− (1 + GI)m

ˆ ∞

t
e−
´ s

t rτdτ [FKs Ks − GKs Ks]︸ ︷︷ ︸
future benefits

ds

 K (8)

The first term, A(K), directly reflects the degree of returns to scale. If F exhibits constant
returns to scale, then A(K) = 0. If F is concave, we have A(K) > 0, whereas if F is convex,
A(K) < 0. The second term captures the immediate benefit of additional capital, defined as the
marginal product of capital minus the marginal adjustment cost associated with additional capi-
tal. Similarly, the expression FKs Ks − GKs Ks represents the future benefits of additional capital for
periods s > t. This framework allows us to examine the conditions under which π may turn nega-
tive. If F is concave, not only isA(K) > 0, but also the future benefits of additional capital are less
than the immediate benefits, meaning firms in this setting lack strong incentives to invest. How-
ever, if F is convex, then A(K) < 0, and more importantly, the future benefits of additional capi-
tal significantly exceed the immediate benefits. Since m is an increasing function, under certain
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conditions, the investment demand—driven by discounted future capital benefits—can surpass
the immediate benefits. In this case, net earnings become negative. Of course, when K becomes
large, the earnings will turn positive again as both GI and −GK are decreasing in firm size K.

Based on this interpretation, our hypothesis is that the global increase in firms with negative
net earnings is likely to be driven by the growing importance of the convexity component in the
corporate production function. In the next section, we present direct evidence supporting this
hypothesis.

3.2.3 The dislink betweenmarginal q and average Q

Our model here also implies that when the shape of production function changes, the marginal q
deviates from average q. Following Fumio Hayashi (1982), we define a firm’s marginal q ≡ ∂V

∂K and
average Q ≡ Vt

Kt
. Their relationship can be shown as in the following lemma.

Lemma 2. The relationship between a firm’s marginal q ≡ ∂V
∂K and average Q ≡ Vt

Kt
is as follows:

qt = Qt −
1
Kt

ˆ ∞

t
e−
´ s

t rτdτ [A (Ks) + B (Ks, Is)] ds (9)

whereA and B are the same as in Lemma 1.

The detailed proof is shown in Appendix C.3. Similarly, for simplicity, we assume that the
adjustment cost function G is homogeneous of degree one, so that B (K, I) = 0. Under this setup,
the relationship between marginal q and average Q is influenced by the shape of the production
function F. If F exhibits constant returns to scale, then A (K) = 0, leading to the classical result
from Hayashi (1982) that marginal q equals average Q.

However, if F has decreasing returns to scale, thenA (K) > 0, resulting in marginal q < aver-
ageQ. In this situation, the firm’s investment demand is lowdue to the lowmarginal q. Conversely,
if F exhibits increasing returns to scale, then A (K) < 0, resulting in marginal q > average Q. In
this case, firms exhibit a strong demand for investment as the high marginal q incentivizes ex-
pansion, and average Q becomes less informative for corporate investment when the shape of
production function changes over time.
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4 Trends in the Shape of Corporate Production Function

4.1 Methodology

In this section, we estimate the shape of the corporate production function and examine its trends
over time. Our goal is to impose minimal restrictions on the structure and sequence of inflection
points, allowing our methodology to more accurately capture the dynamics present in the data.

Our conjecture is that, for any given firm i, if its total capital remains below a specific threshold
or turning point, the firm experiences increasing returns to scale. However, once capital accumu-
lation exceeds this inflection point, the firm shifts to a regime of decreasing returns to scale.6

The primary econometric challenge is that we cannot observe both returns-to-scale regimes for a
single firm simultaneously. Therefore, we treat the firms in each cross-sectional year as random
samples drawn along the production function, enabling us to infer these transitions.

Specifically, in each cross-sectional year t from 1980 to 2021, we apply Bayesian MCMC to de-
termine the capital threshold or inflection point, Kt. This approach allows us to estimate the posi-
tion of these inflection points for each year, revealing how these thresholds evolve over time. The
resulting time series of kt reflects shifts in the inflection points, which provides insight into the
evolving nature of corporate production functions over the past several decades.

a two-step estimation strategy The estimation of the inflection point naturally aligns with the
broader literature on structural change estimation (e.g., Gregory C Chow, 1960; Richard E Quandt,
1958). A substantial body of research focuses on detecting and testing structural shifts in the rela-
tionship between economic variables over time (e.g., Pierre Perron et al., 2006; Alexander Aue and
Lajos Horváth, 2013). In cases of abrupt changes, the relationship undergoes a sudden shift once
a specific index is surpassed, commonly referred to as the change point.7 However, in our setting,
two challenges arise when applying classical structural change estimation techniques. First, the
index variable is continuous rather than a discrete time index. Second, the explanatory variable is
subject to endogeneity. To address these issues, we propose a heuristic two-step estimation strat-
egy that integrates Bayesian MCMC to estimate the breakpoint of the continuous capital variable
while leveraging the classic Levinsohn and Petrin (2003) method to correct for endogeneity.

In the first step, we tackle the issue posed by the continuous nature of the capital variable.
Traditional structural change estimation relies on grid search (for a single break) or dynamic pro-
gramming as in Jushan Bai and Pierre Perron (2003) (formultiple breaks). Thesemethods become

6In our estimation procedure, we do not impose the existence of a threshold or require that the estimated degree
of returns to scale in the first component be greater than 1. Instead, we let the data determine these relationships.

7A closely related approach is threshold regression (e.g., Howell Tong, 1978; Bruce E Hansen, 2000), which gener-
alizes the threshold variable beyond a time index.
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computationally expensive when dealing with large datasets, with a complexity ofO(T2), where T
denotes the number of observations. To improve efficiency and precision in estimating the inflec-
tion point, we employ the Bayesian MCMC approach proposed by David A Stephens (1994), which
is particularly suited for detecting continuous breaks. Following the arguments in Pierre Perron
and Yohei Yamamoto (2015), it is straightforward to show that the breakpoint can be consistently
estimated even in the presence of potential endogeneity in capital.8

In the second step, we divide the data into pre-break and post-break subsamples. While the
breakpoint estimation from the first step is unbiased, the slope coefficients remain subject to en-
dogeneity.9 To address this concern, we construct a rolling 10-year panel by incorporating data
from the preceding nine years for each year within each subsample. We then apply the Levin-
sohn and Petrin (2003) method to correct for endogeneity and iterate forward year by year. As a
robustness check, we also implement the Olley and Pakes (1996) approach.10

why Bayesian? Two key challenges motivate our use of Bayesian MCMC. First, our model ex-
amines the relationship between output and capital, a continuous variable rather than a discrete
one. In the literature, structural breaks estimation is often applied to time-series settings with a
discrete-time index (t = 1, 2, . . .), where maximum likelihoodmethods naturally serve as a tool to
evaluate model fit when a finite set of possible structural breaks is defined. However, in a contin-
uous context (e.g., capital as in our model), it is impossible to conduct a search over all possible
values for the structural break. Bayesian MCMC addresses this issue by allowing us to place con-
tinuous distributions, thus facilitating structural break estimation. Technically, Bayesian MCMC
also simplifies model fitting, as it is challenging to compute derivatives of the continuous-time
(log-)likelihood function, which are required for standard error calculationbased on second-order
derivatives.

Second, beyond estimating the structural break, we aim to estimate the returns-to-scale pa-
rameters. Obtaining the marginal distributions of these parameters is also challenging, as it re-
quires integrating over the distributions of other parameters. Bayesian MCMC enables efficient
sampling from the joint posterior distribution by constructing a Markov Chain from the univari-
ate conditional posterior distributions, thus avoiding exhaustive continuous interval searches or

8Our simulation results provide further validation of this point. Ping Yu (2015) notes that estimationmay be biased
when the threshold variable is endogenous. However, as demonstrated by Perron and Yamamoto (2015), the inflection
point is affected only in extreme edge cases. As a robustness check, we also implement the PingYu andPeter CBPhillips
(2018) method and find that our results remain consistent.

9We have also conducted simulation studies to further confirm the presence of this endogeneity issue.
10Additionally, since we assume that labor choices are determined without frictions, labor does not enter ourmodel

directly as the optimal labor choice is an function of existing capital stock. In the absence of labor, the Ackerberg,
Caves and Frazer (2015) approach is equivalent to the Levinsohn and Petrin (2003) method.
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direct integration over auxiliary parameters. The computational benefits of Bayesian MCMC for
such applications are well-documented in the existing literature (e.g., Stephens, 1994).

baseline functional form The functional form used in our baseline estimation is as follows. For
a given firm i at time t, let total output be denoted by Yi,t and total capital stock, which includes
both tangible and intangible assets, be represented by Ki,t. We assume a structural change occurs
at kt, allowing us to model the production function as:

Yi,t =

{
AH

t Ωi,tZH
i,tK

αH
t

i,t if Ki,t < K̄t

AL
t Ωi,tZL

i,tK
αL

t
i,t if Ki,t ≥ K̄t,

(10)

where AH
t and AL

t are common aggregate factors, Ωi,t denotes unobservable firm-level productiv-
ity, ZH

i,t and ZL
i,t are independent log-normal random shocks, and αH

t and αL
t represent the returns-

to-scale parameters before and after the threshold at time t, respectively. Importantly, we impose
no restrictions on αH and αL (i.e., αH > 1 or αL < 1); instead, the data informs the estimation
results of these parameters. Taking the logarithm of both sides and reparameterizing, we derive
our baseline estimation model:

log Yit =

{
aH

t + ωi,t + αH
t log Ki,t + εH

i,t if Ki,t < K̄t

aL
t + ωi,t + αL

t log Ki,t + εL
i,t if Ki,t ≥ K̄t,

(11)

where εH
i,t ≡ log ZH

i,t ∼ N (0, σ2
H) is independent of εL

i,t ≡ log ZL
i,t ∼ N (0, σ2

L). In addition, ait ≡
log At and ωit ≡ log Ωt. Equation (11) is specified in a cross-sectional framework, with parameter
values varying across different years. Within this framework, structural break estimation is con-
ducted by treating capital as a continuous "timing" variable that signals shifts in returns to scale,
enabling us to capture structural changes in the production function across different capital lev-
els. As previously mentioned, we utilize the Bayesian MCMC approach to detect the presence of
a threshold. To address potential bias in estimating the unobservable ωi,t, we adopt the method
proposed by Levinsohn and Petrin (2003) in our baseline analysis. A detailed explanation of the
implementation is provided in Section A of the appendix.

4.2 Baseline Evidence

Figure 2presents long-termchanges in the corporateproduction functionusing twographs. Graph
(a) shows the evolution of the estimated convexity-concavity threshold over time, while Graph (b)
provides time-series plots of the estimated degrees of returns to scale for various production com-
ponents. This dual perspective allows us to observe both the shifts in capital thresholds and the
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changing returns-to-scale patterns across different production aspects.

[Figure 2 here]

In Graph (a), the blue curve shows the threshold in natural logarithmic terms, while the red
dashed line reflects the raw values in millions of USD. The findings indicate a significant upward
trend in this threshold, revealing a steady increase in the capital level k̄ atwhichfirms shift from in-
creasing to decreasing returns. Specifically, in 1980, the threshold was estimated at 5.02 thousand
dollars; by 2021, it had risen to 1.31 million dollars – a dramatic 261-fold increase. The estimated
time trend coefficient, shown in Table 2, is 0.084 and is significant at the 1% confidence level.
All these findings suggest that modern firms are experiencing an extended phase of increasing
returns to scale, requiring a much larger operational scale before the neoclassical diminishing
return effects begin to apply.

In Graph (b), we illustrate the estimated degrees of returns to scale over time. The orange
curve, with shaded areas, represents the slope coefficient αH, while the green curve and its shaded
region represent αL. These estimates are obtained without any prior restrictions on slope magni-
tudes, providing an unbiased perspective on production dynamics. The shaded areas around each
curve show the 95% credible intervals, approximated by two times the posterior standard devia-
tions. The plot reveals two distinct regimes within the aggregate production function. The first
component of production function, marked by αH values consistently above 1 for all the periods
after 1986, indicates increasing returns to scale, while the second, represented by αL, shows values
below or close to 1, indicating decreasing returns to scale or a constant one. Despite some fluctu-
ations over time, the average values of αH and αL in our sample are approximately 1.11 and 0.99,
respectively. Statistical tests further confirm that these two coefficients are significantly different
from each other, with a mean of 0.13 and a T-statistics of 21.58, providing strong evidence of these
dual phases within the production structure.

The upward trend in the convexity-concavity threshold, along with the distinct patterns of re-
turns to scale in both production components, implies that modern firms operate with a more
pronounced phase of initial increasing returns. This trend could be driven by factors such as
technological advancements, the scaling of intangible assets, and increased capital intensity. Our
model, applied to U.S. public firms, highlights a structural transformation in the production func-
tion, aligning with the broader shift towards capital-intensive and intangible-dependent produc-
tion models (e.g., Maarten De Ridder, 2024; Karabarbounis and Neiman, 2014).

More importantly, this long-termshift in the production function’s shape represents a notewor-
thy development for economic theory, where production functions are central in linking inputs
to outputs. Traditional concave functions (e.g., Cobb-Douglas, Constant Elasticity of Substitution)
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remainwidely used in theoretical and empirical work, yet our evidence of evolving production dy-
namics suggests a need to reconsider standard models to better capture the increasingly capital-
heavy and scale-intensive nature of modern production.

[Figure 3 here]

In Graph (a) of Figure 3, we illustrate the percentile position of the estimated threshold over
time. To account for the possibility that the upward trend in the threshold may simply reflect in-
creasing firm size, we report the quantile rank of the estimated convexity-concavity threshold for
each year. Specifically, for each year t, we compute the relative rank of the convexity-concavity
threshold as k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution function of total capi-
tal. This approach enables us to measure the threshold relative to the overall capital distribution
across firms in each year. The results in Graph (a) reveal an upward trend in the quantile rank
of the threshold, affirming that the increasing significance of production convexity is not solely
due to larger firm sizes. Initially, in 1980, the quantile of the estimated breaking point was ap-
proximately 0.11, meaning that only the bottom 11%were in the increasing returns-to-scale phase.
By 2021, this quantile has risen to around 0.60, indicating that firms whose capital stocks below
60% of the maximum capital level remain in the increasing returns-to-scale stage. Similarly, the
estimated time trend coefficient for this quantile threshold, shown in Table 2, is 0.012 with a T-
statistics of 8.707.

To provide further insights into the long-term shifts in the corporate production function, we
present Figure 3, which includes two alternative indicators that reveal nuanced aspects of this
transformation. In Graph (a), we present an average measure of returns-to-scale, calculated as
αH × k̄pc + αL × (1 − k̄pc). This metric represents a weighted average of returns-to-scale across
firms, capturing both the increasing returns-to-scale component (denoted by αH) and the decreas-
ing returns-to-scale component (denoted by αL), weighted by the relative threshold k̄pc. The results
in Graph (b) indicate a steady upward trend in the average returns-to-scale over the sample pe-
riod. At the beginning of the period, the average return-to-scale was 0.97 in 1980. By 2021, this
value has risen to 1.07, with a peak of 1.08 in 1999. This suggests that the degree of returns-to-scale
has increased by 10% over the past forty years, with the initial phase of increasing returns-to-scale
exerting a growing influence on the overall production function of firms in recent decades. Again,
the corresponding time trend coefficient is statistically significant at the 1% confidence level.

In addition, Graph (b) provides a measure of the relative importance of convexity versus con-
cavity in production, calculated as the ratio convexity

concavity =
αH×k̄pc

αL×(1−k̄pc)
. This ratio offers insights into

the dominance of convexity (or increasing returns-to-scale) relative to concavity (or decreasing
returns-to-scale) in firms’ production processes. The results show a significant rise in the rela-
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tive importance of convexity throughout the sample period, with an initial value of 0.28 in 1980,
climbing to 1.72 by 2021. The estimated time trend coefficient is 0.051 with a T-statistics of 7.729.

Therefore, the evidence presented in Figure 3 complements our findings in Figure 2, high-
lighting a structural shift in the production function of U.S. public firms. This shift underscores
the rising prominence of convexity in production, indicating that firms now operate at a larger
scale before reaching diminishing returns.

In addition, the combination of reduced marginal costs and higher fixed costs can naturally
lead to a rightward shift in the convex-concave threshold. Intuitively, lowermarginal costsmake it
optimal for firms to produce more before encountering diseconomies of scale, while higher fixed
costs incentivize firms to operate at larger scales to spread these costs. A detailed discussion is
provided in Appendix B.2.

public v.s. full-sample Due to data limitations, our empirical analysis is based solely on a dataset
of public firms. This restriction may affect certain aspects of our findings, particularly the move-
ment of the convexity-concavity threshold and the degree of convexity in the production function.
However, it does not impact our primary conclusion regarding the long-run shifts in convexity-
concavity thresholds over time. Our analysis suggests that the observed increase in thresholds
among public firms likely provides a lower bound for threshold changes across the broader pop-
ulation of firms. This idea is illustrated in Figure A4 in the appendix. Private firms are gener-
ally smaller and less likely to have reached the concave portion of their production functions. If
public firms are becoming younger—indicating that the IPO threshold has shifted left—this could
contribute to the observed trend in the rising degree of returns to scale in the data (as shown in
Figure A4 in the appendix). However, as Figure A2 indicates, public firms have been aging over
time. From this perspective, the changes in the corporate production function identified in our es-
timates likely provide a conservative benchmark for the shifts occurring in the broader economy,
which includes both public and private firms.

At the same time, this limitation may influence the estimated slope coefficients, particularly
for the convex portion of the production function, as seen in Figure A4. Excluding private firms
could lead to an underestimation of the degree of convexity, as smaller, non-public firms tend
to exhibit stronger increasing returns to scale due to their less mature production processes and
lower initial capital requirements. Future research could address this limitation by incorporating
private firm data, providing a more comprehensive view of production function dynamics across
both public and private firms.
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4.3 Robustness Checks

In this section, we conduct a series of additional tests to verify the robustness of our primary
conclusions from the baseline analysis. These tests are designed to examine the stability of our
findings across various specifications and to assess the sensitivity of our results to alternative as-
sumptions. By implementing these robustness checks, we aim to strengthen the reliability of our
core insights regarding the evolving production function dynamics and the long-term shifts in
returns to scale.

4.3.1 Simulation

To begin, we assess the efficacy of Bayesian MCMC estimation through simulation studies. This
simulation exercise is designed to demonstrate our methodology’s ability to accurately detect
time-series changes in thresholds. In each cross-section of this example, we set the 30% quan-
tile of total capital as the break point and assign αH = 1.3 and αL = 0.7. Additionally, we allow
premature firms to exhibit greater output variability. Specifically, the true model specification in
this simulation exercise is as follows:

log yi,t =

{
−2 + (1.3 + uH

t ) log ki,t + εH
i,t if ki,t < k̄t

2 + (0.7 + uL
t ) log ki,t + εL

i,t if ki,t ≥ k̄t,
(12)

where the independent terms uH
t ∼ Uni f orm(−0.25, 0.25) and uL

t ∼ Uni f orm(−0.1, 0.1) introduce
time-series variation to the coefficients. The error terms εH

i,t and εL
i,t are independently distributed

with respect to each other, and we assume that εH
i,t ∼ N (log ki,t, 0.49) and εL

i,t ∼ N (log ki,t, 0.25).
Wemodel themean of these error terms to be perfectly driven by the endogenous capital to reflect
one possible cause of endogeneity. The coefficients and relative quantiles are set to reflect yearly
changes in total capital. Importantly, since we estimate structural breaks independently within
each cross-section, this setup more closely mirrors real-world conditions.

Using the simulated dataset, we replicate our previous analysis with the Bayesian MCMC es-
timation approach. The estimated results for the convexity-concavity threshold and slope coeffi-
cients are displayed in Graphs (a) and (b) of Figure A5 in the Appendix. These graphs demonstrate
that our methodology accurately identifies the turning point whenever it exists in the data. No-
tably, the estimated thresholds from our Bayesian MCMC approach closely align with the true
values. Additionally, the estimated slope coefficients are nearly identical to the actual values and
fluctuate around them over time. Not surprisingly, the slope estimates are biased from the true
values of 1.3 and 0.7, respectively. This simulation study, therefore, affirms the reliability and ac-
curacy of the structural break estimation of our Bayesian methodology.
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4.3.2 Alternative Functional Form

Afterward, we examinewhether ourmain findings remain consistent when alternative functional
forms are used for the convex-concave production function.

continuity First, our baseline model (i.e., Equation (11)) does not assume continuity in the pro-
duction function, resulting in a potential discontinuity at the turning point kt. As a robustness
check, we impose continuity at kt by enforcing the condition aH

t + αH
t log kt = aL

t + αL
t log kt. Solv-

ing for aL
t and incorporating this restriction intomodel (11), we can rewrite the equation as follows:

log yi,t =

{
aH

t + ωi,t + αH
t log ki,t + εH

i,t if ki,t < k̄t

aH
t + ωi,t + (αH

t − αL
t ) log kt + αL

t log ki,t + εL
i,t if ki,t ≥ k̄t.

(13)

We then replicate our baseline procedures, this time assuming a continuous convex-concave
production function. The results for the thresholds and slope coefficients under this continuity
constraint are shown in Graphs (a) and (b) of Figure A6. According to these graphs, our main
conclusions remain consistent with the modified model specification. We continue to observe
an upward trend in the estimated convexity-concavity threshold, which further reinforces the in-
creasing significance of production convexity over time. However, the specific magnitudes show
slight deviations from our baseline analysis. The estimated breaking point is approximately 48.1
thousand dollars in 1980, rising to around 2.42 million dollars in 2021 – a nearly 5,000% increase.

Furthermore, the average values of the estimated slope coefficients before and after the thresh-
old across our sample are approximately 1.20 and 0.99, respectively. These estimates differ slightly
from the 1.11 and 0.98 obtained with our baseline approach. Despite these minor differences in
magnitude, ourmain conclusions regarding the evolving shape of the production function remain
robust. This robustness indicates that the observed shifts in production convexity reflect a funda-
mental change, largely unaffected by variations in the specific model assumptions applied.

exponential functional form Another commonly used functional form in the convex-concave
production function literature is the S-shaped exponential form (e.g., Skiba, 1978). Specifically,
the functional form applied in our robustness check is as follows:

yi,t =
AtΩi,tZi,t

1 + e−γt(log ki,t−k̄t)
, (14)

where log Zit follows an iid normal distribution N (0, σ2). The definitions of y and k remain the
same as in our baseline model (Equation (11)). Taking the logarithm of both sides and redefining
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ait ≡ log At, ωit ≡ log Ωt, and ε it ≡ log Zit, we get the following equation:

log yi,t = at + ωi,t − log
(

1 + exp
{

γtkt − γt log ki,t

})
+ ε i,t. (15)

Compared to the functional form in our baseline model, this S-shaped exponential form is
smooth and continuously differentiable at every point, making it particularly advantageous for
theoretical studies. For this model, we estimate the parameters using the maximum likelihood
method due to its straightforward form. The standard errors and t-values of the estimators are
derived from the inverted observed Fisher information matrix. The estimated results for the
convexity-concavity threshold (k̄t) and slope coefficient (γt) are shown in Graphs (c) and (d) of
Figure A6, respectively.

These graphs demonstrate that the upward trend in the estimated convexity-concavity thresh-
old persists even with the S-shaped functional form. The average estimated breaking point is
approximately 67.15 million dollars in 1980s, increasing to around 254.30 million dollars in 2021,
marking a 379% increase, which aligns with our findings in the baseline analysis. Furthermore,
the average value of the coefficient γ is estimated to be around 1.11 across the sample. These
results reinforce our primary conclusions regarding the growing importance of production con-
vexity over time, suggesting robustness to alternative functional forms.

4.3.3 Alternative TFP EstimationMethod

In this robustness check,we apply theOlley andPakes (1996)method for TFPestimation inplace of
the Levinsohn and Petrin (2003) endogeneity correction used in our baseline analysis. The Olley-
Pakes approach addresses endogeneity by employing investment as a proxy variable to control
for unobserved productivity shocks, offering an alternative means of mitigating potential biases
in production function estimates. For this exercise, we use total investment in both tangible and
intangible capital, as well as firm age.

Figure A7 in the Appendix presents the results using this adjustment. In Graph (a), we show
the estimated degrees of returns-to-scale (again, αH for the increasing returns phase and αL for
the decreasing returns phase) over time. Consistent with the baseline results, we find that αH

generally remains above 1, while αL stays close to 1, reflecting the two-phase structure of returns
to scale among firms. Throughout our sample, the average values for these two parameters are
1.28 and 1.03, respectively. The shaded areas denote confidence intervals, indicating that both are
statistically above 1. The T-statistics for αH and αL are 13.20 and 3.82, respectively. Compared with
our estimation results using Levinsohn and Petrin (2003) method, the estimated αH values are
relatively large.
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Similar to our baseline findings, Graph (b) displays the average measure of returns to scale.
This figure shows a clear upward trend, especially after the early 2000s, underscoring the growing
importance of the convex portion of the production function. The average return-to-scale was
0.98 in 1980, and it has increased to 1.20 in 2021. Graph (c) illustrates the ratio of convexity to
concavity. Our calculated ratio steadily rises over the sample period, rising from 0.10 in 1980 to
2.03 in 2021, indicating a shift toward convexity in firms’ production functions. This pattern aligns
with ourmainfindings, affirming the robustness of the results under an alternativeTFPestimation
method.

4.3.4 Alternative Econometric Approach

Yu and Phillips (2018) introduce a nonparametricmethod for estimating breakpoints that does not
rely on instrumental variables. Their approach leverages information about structural changes to
identify abrupt shifts. However, thismethod involves nonparametric screening across all possible
breakpoints, leading to a computational cost that significantly exceeds that of our approach. The
computational burden is particularly prohibitive for detecting breaks in a reasonable time when
the sample size is large.11

As a robustness check, we implement their method by discretizing total capital into 200 grids
to approximate the true breakpoints. The corresponding results are shown in Figure A8 in the
appendix. The findings confirm that our key conclusions remain robust under this alternative
econometric approach. Specifically, there is an upward trend in the estimated threshold for the
relationship between output and input, with the estimated degrees of returns to scale exceeding 1
before the threshold and falling below 1 afterward. However, the estimatedmagnitudes differ. The
breaking point is estimated at approximately $76,500 in 1980, rising to about $204,000 in 2021—a
nearly 267% increase. The average returns to scale are 1.12 before the threshold and 0.98 after the
threshold. Therefore, our key conclusions remain robust when using this alternative econometric
approach.

4.4 Industry-Level Evidence

In this section, we examine industry-level evidence of long-run changes in corporate production
functions. Specifically, we analyze the estimated convexity-concavity threshold in level, threshold
in percentile, average return-to-scale, and the relative importance of convexity to concavity across
various industries. Thesemeasures are estimated and constructed in the sameway as in our base-
line analysis, enabling a comparison of industry-specific trends against aggregate findings. We

11Our rough estimate suggests their method is approximately 144 times slower than ours.
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present the average return-to-scale results for 10 different Fama-French industries in Figure 4,
with results for the other three measures shown in Figure A9 in the appendix. Additionally, the
estimated time-trend coefficients, displayed in Table 2, summarize the sign and significance of
time trends for each measure within each industry.

[Figure 4 here]

The first key observation from our analysis is that the patterns of change differ substantially
across industries. For instance, industries such as Manufacturing and Healthcare exhibit signifi-
cant increases in both the baseline threshold and average return-to-scale over time, suggesting
a shift towards greater economies of scale and an increasing role of convexity. In the 1980s, the
average return-to-scale inManufacturing was only 0.92, which rose to 1.05 by the 2010s. Similarly,
Healthcare saw an increase from 0.72 to 1.05 over the past forty years. Amodest increase is also ob-
served in Business Equipment, where the average return-to-scale grew from 1.02 to 1.05, peaking at
1.12 around 2000. Certain industries, such as Consumer Nondurables, Consumer Durables, Telephone
and Television, and Other, display a U-shaped pattern, with initial declines followed by increases
in return-to-scale. In contrast, Wholesale and Retail exhibits a downward trend in the convexity-
concavity threshold, decreasing from 1.07 to 0.98 over the past few decades, indicating a decline
in economies of scale for this sector. For other sectors, such as Energy andUtilities, no clear trends
emerge, likely due to more pronounced business cycle effects.

[Table 2 here]

To further categorize industries, we classify an industry as having increasing returns-to-scale
if its time-trend estimate for return-to-scale is positive and statistically significant. Conversely,
an industry is classified as having a negative trend if the estimate is negative and significant, or
as having no trend if the estimate is insignificant. Based on the time-trend estimates in Table 2,
industries with the strongest upward trends include Consumer Nondurables (0.002),Manufacturing
(0.005), Healthcare (0.006), and Telephone and Television (0.006), all exceeding the coefficient esti-
mated for the aggregate economy (0.001). These industries show significant positive time-trend
coefficients across multiple measures, highlighting an increasing emphasis on convexity in their
production functions. In contrast, industries such as Consumer Durables (-0.002), Wholesale and
Retail (-0.004), and Other (-0.0008) display negative or insignificant trends, suggesting either a de-
cline or stability in returns-to-scale characteristics. These results align with findings from Kariel,
Savagar andMainente (2022), who, using UK data, report significant variability in returns-to-scale
across sectors. For instance, manufacturing consistently exhibits high returns-to-scale, with a
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positive trend over time, whereas sectors such as wholesale, trade, and transport display returns
close to constant returns-to-scale.

As illustrated in Figure A9 and reflected in the time-trend coefficients in Table 2, using alterna-
tive indicators reveals slight differences in industry-specific trends. For example, in the Consumer
Durables sector, we observe a significant upward trend in both the threshold level and percentile,
though not in the average return-to-scale. These differences may stem from measurement noise
or varying business cycle characteristics across industries. Additionally, the U-shaped pattern
seen in industries such as Telephone and Television suggests that focusing on only the most recent
decade may yield different conclusions. However, for industries like Consumer Nondurables,Man-
ufacturing, and Healthcare, the evidence of structural shifts towards higher returns-to-scale and
dominance of convexity remains clear and consistent, with all four indicators showing a signifi-
cant upward trend.

In summary, our industry-level analysis reveals that shifts in production functions are not uni-
form across sectors. Differences in time-trend estimates underscore the unique trajectories of
each industry, highlighting the evolving landscape of production technologies and economies of
scale shaped by industry-specific dynamics. This sectoral diversity reflects how structural factors,
technological progress, and market conditions interact differently within each industry, leading
to varying paths of production function development.

4.5 Global Evidence

Beyond the industry-level analysis, we extend our investigation to country-level evidence of long-
run changes in corporate production functions to evaluate whether ourmain findings hold across
diverse economic settings. Following a similar approach to the industry-level analysis, we ex-
amine the baseline threshold, threshold in percentile, average return-to-scale, and the relative
importance of convexity to concavity for each country. By maintaining consistency with these
measures from our baseline analysis, we ensure that country-specific variations in production
function characteristics over time are comparable. Table 2 provides a summary of the time-trend
estimates for each country, highlighting the direction and statistical significance of changes in
these coremetrics. The average return-to-scale results for these countries are presented in Figure
5.

[Figure 5 here]

Ourfindings reveal heterogeneous trends across countries, reflectingdiffering economic struc-
tures, industrial compositions, and stages of development. For instance, countries such as China
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and India show substantial increases in both the baseline threshold and average return-to-scale,
suggesting a trend toward greater economies of scale and a more prominent role of convexity in
production. Specifically, the average return-to-scale in China has increased from 0.75 in 2000 to
1.03 in 2019, while India shows a rise from 0.64 to 0.94 over the same period. These changes align
with rapid economic growth and increased capital intensity in these nations, which may reflect
shifts toward larger-scale andmore capital-intensive production processes. In contrast, countries
such as Canada and Japan display relatively stable or even slightly declining trends in these mea-
sures, suggesting a slower or more conservative evolution of production structures within these
economies over the sample period. South Korea and the UK exhibit a U-shaped trend, with an
initial decline in return-to-scale followed by a moderate upward adjustment in recent years. This
pattern may indicate structural adaptation in response to evolving economic demands.

To further categorize countries, we define a country as experiencing increasing returns-to-
scale if its time-trend estimate for return-to-scale is positive and statistically significant. Con-
versely, a country may exhibit a negative trend if the estimate is negative and significant, or show
no trend if the estimate is insignificant. Based on the time-trend estimates, countries with the
most pronounced upward trends include China (0.016), India (0.017), Germany (0.003), Thailand
(0.006), Japan (0.002), and Australia (0.027). In contrast, countries such as South Korea (-0.004) and
Sweden (-0.011) exhibit negative trends, indicating a long-term decline in returns-to-scale charac-
teristics. For other countries, including Canada, France, and theUK, the estimated time trends are
statistically insignificant, suggesting that changes in production structure are more subdued in
these economies.

As seen in Table 2, alternative indicators reveal slight differences in country-specific trends,
yet the overarching conclusion underscores the diversity in production function dynamics across
various economic contexts. Our analysis here highlights the influence of country-specific fac-
tors—such as economic policies, resource allocation, industrial composition, and stages of de-
velopment—in shaping the evolution of corporate production functions. Countries like China
and India appear to be undergoing substantial structural transformations, shifting toward higher
returns-to-scale and an increased emphasis on convexity, reflecting a move toward increasingly
capital-intensive and scale-driven production models. In contrast, other nations maintain more
stable production structures, possibly due to factors such as regulatory environments, market sat-
uration, or economic policy stability. These findings underscore how production dynamics are
shaped by a complex interplay of economic and institutional factors that varywidely across global
contexts, suggesting that shifts in production function characteristics are profoundly influenced
by local economic conditions and policy frameworks.
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4.6 Reduced-form Evidence

Before proceeding to our quantitative exercise, we investigate whether industries with higher
convexity-concavity thresholds are associated with a higher fraction of unprofitable firms. To en-
sure precise estimation of the production function, we use the Fama-French 10 industry classifi-
cations, which provide sufficiently large sample sizes for each industry.

Figure 6displays aBinscatter plot illustrating the relationshipbetween the industry-level convexity-
concavity threshold and the proportion of firms with negative net earnings. The red dashed line
represents the linear-fit regression line. The figure reveals a clear and positive relationship: in-
dustries with higher convexity-concavity thresholds aremore likely to have a larger share of firms
reporting negative net earnings. This positive association, observed in the reduced-form regres-
sion, supports our hypothesis that a higher threshold aligns with an increased prevalence of un-
profitability within an industry.

[Figure 6 here]

Table 1 further substantiates this finding through regression results. Across various model
specifications, the positive relationship between the convexity-concavity threshold and the share
of unprofitable firms remains robust, evenwhen controlling for year and industry fixed effects. In
terms of economic significance, our results indicate that a one standard deviation increase in the
convexity-concavity threshold (2.47 units) corresponds to a 1.73 to 4.69 percentage point increase
in the proportion of unprofitable firms. This finding translates to a 0.10 to 0.27 standard deviation
increase in the share of firms with negative earnings.

[Table 1 here]

These findings imply that the shape of the production function has economic relevance in
determining the profitability landscape within an industry. Industries with higher convexity-
concavity thresholds—likely driven by advancements in transformative technologies such as dig-
itization—experience shifting economies of scale that affect business models, intensify competi-
tion, and increase the prevalence of unprofitable firms within these sectors. As industries adopt
more capital-intensive and scalable technologies, the initial phase of production expansion ex-
tends, leading to higher upfront costs and potentially delayed profitability. This pattern under-
scores the broader influence of production function shape on industry dynamics and profitabil-
ity distributions, suggesting that changes in production structure can impact firms’ financial out-
comes and competitive environments.

29



5 Quantitative Analysis

5.1 Model Framework

Our model framework builds on the firm dynamics model of Hopenhayn (1992), with modifica-
tions to include capital accumulation and adjustment costs. A detailed setup of the model can be
found in Section D in the appendix. In this framework, firms own their capital stock andmake in-
vestment decisions under both convex andnon-convex adjustment costs. The equilibrium focuses
on optimal decision-making regarding entry, exit, and investment strategies.

A key difference in our approach is the use of a convex-concave production function rather
than the commonly applied Cobb-Douglas form. The production function is specified as follows:

yi,t = zi,t

(
kβ

i,tl
1−β
i,t

)αH
t ×Iki,t<k̄t

+αL
t ×Iki,t≥k̄t (16)

where yi,t represents output, ki,t is capital, li,t is labor, and zi,t is individual firm productivity. The
parameters αH

t and αL
t represent the degree of returns-to-scale before and after the threshold k̄t,

respectively. The indicator function Iki,t<k̄t
or Iki,t≥k̄t

activates the relevant returns-to-scale param-
eter based on the capital level relative to the threshold. β represents the usual capital share, and
labor can be frictionless chosen.

Importantly, these returns-to-scale parameters (αH
t , αL

t ) and the threshold k̄t are time-varying
and are calibrated based on our empirical estimates in Section 3 using the baselinemodel specifi-
cation. This approach enables ourmodel to capture dynamic shifts in production function charac-
teristics, allowing for a nuanced analysis of firms’ capital accumulation decisions under changing
economic conditions.

5.2 Quantitative Performance

Graph (a) of Figure 7 presents a comparison between the model’s predictions and actual data on
the share of firms with negative earnings over time. As shown, our model successfully captures
both the general upward trend and fluctuations observed in the data, indicating its effectiveness
in replicating key dynamics in the proportion of unprofitable firms. The correlation between
the model and data counterparts is 0.74, statistically significant at the 1% level. The share of un-
profitable firms exhibits cyclical patterns, with notable increases during economic downturns,
such as in the early 2000s and the financial crisis of 2008. This cyclical behavior aligns well with
economic conditions, as downturns typically result in reduced revenues and increased financial
strain, pushing some firms into negative earnings. In our model, this outcome emerges from a
substantial decline in the estimated degree of returns-to-scale, αH, around the early 2000s.
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To gain further insights into the underlying mechanisms, Figure 8 presents the equilibrium
value function, investment decisions, and earnings for firms across varying productivity levels.
The subscript of z in the figure indicates the relative level of productivity. As seen in Figure 8,
Graph (b), firms with low capital stocks but high productivity tend to invest heavily in capital ac-
cumulation. This behavior reflects their intention to rapidly scale production and secure future
returns. However, due to the convex nature of adjustment costs, the marginal costs of investment
rise with increasing capital levels. Consequently, firmswith lower initial capital but strong growth
potential aremore prone to experience negative earnings in the initial stages, primarily due to the
burden of adjustment costs. Graph (c) illustrates this effect, showing that this initial investment
surge imposes high costs that can exceed revenues, resulting in negative earnings, particularly
for young and productive firms that are building their capital base. Intuitively, these firms tol-
erate short-term losses as part of their strategy to achieve future profitability, anticipating that
as they accumulate capital, their need for substantial investment will decrease, allowing them to
shift toward profitability as adjustment costs diminish and production efficiency improves.

In summary, our model demonstrates a strong quantitative capability in replicating the ob-
served share of unprofitable firms across various economic cycles. This suggests that the evolving
shape of the corporate production function likely accounts for the rising prevalence of unprof-
itable firms over the past few decades.

5.3 Implications on Corporate Market Power

Our analysis contributes to the ongoing debate over the evolution of corporate market power in
the U.S. Recent studies have used different methodologies to estimate markups, which can be
broadly categorized into twomain approaches. The first is the demand-system approach, which esti-
mates product-level markups by analyzing price and quantity data under the assumption of Nash-
Bertrand competition. This method is widely applied to consumer goods, using datasets such
as NielsenIQ Retail Scanner Data, as seen in the works of Hendrik Döpper, Alexander MacKay,
Nathan Miller and Joel Stiebale (2024); James Brand (2021); Enghin Atalay, Erika Frost, Alan T.
Sorensen, Christopher J. Sullivan and Wanjia Zhu (2023). Since scanner data provide detailed
information on unit sales and revenues at the universal product code (UPC), store, and weekly
levels for retail chains, this approach offers granular insights into pricing behavior. However, a
key limitation is its narrow focus on tangible consumer goods, which may not capture broader
trends in market power. This concern is amplified by a growing body of research emphasizing
the rising importance of the intangible economy—such as intellectual property, digital platforms,
and brand value—over the past few decades (e.g., Carol Corrado, Jonathan Haskel, Cecilia Jona-
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Lasinio and Massimiliano Iommi, 2022; Nicolas Crouzet, Janice C. Eberly, Andrea L. Eisfeldt and
Dimitris Papanikolaou, 2022; De Ridder, 2024; Andrea Chiavari and Sampreet Goraya, 2021). As
a result, questions have been raised about the representativeness of NielsenIQ data for assessing
economy-wide shifts in market power.

The second approach is the production function method, which aims to infermarkups from rev-
enue data by estimating the quantity-based production function under the assumption that firms
equate marginal revenue product with marginal input cost. While this method provides a use-
ful lens, it also has several limitations. First, as highlighted in the misallocation literature (e.g.,
Diego Restuccia and Richard Rogerson, 2017; Chang-Tai Hsieh and Peter J. Klenow, 2009; Joel M.
David and Venky Venkateswaran, 2019), observed changes in the marginal product of inputs may
not necessarily reflect true shifts in productivity. Instead, they could indicate time-varying dis-
tortions in input allocation. Second, this method does not fully disentangle the effects of market
power from those driven by technological change. For example, De Loecker, Eeckhout and Unger
(2020) rely on the following formulation for estimating markups:

markupQJEit = θv
i,t

Pi,tQi,t

Pv
i,tvi,t

where θv
i,t denotes theoutput elasticity of theflexible input v. According to this expression,markups

can increase either due to higher output prices (Pi,t) or due to decliningmarginal input costs (Pv
i,t).

Thus, the observed markup trends could be driven by rising corporate market power, or alterna-
tively, by enhanced returns to scale—microfounded in our model as reduced variable costs and
increased fixed costs, as elaborated in Appendix B.1.

As discussed in Section 3.2.1, our estimated αt captures a combinationof influences: changes in
corporatemarket power (εt), adjustments in returns to scale for quantity production (st), and shifts
in factor shares (γt). Specifically, an increase in returns to scale (higher st) makes the revenue
production functionmore convex, raising αt, while greatermarket power (lower εt) makes itmore
concave, reducing αt. This interplay implies that even if corporate market power is rising, its
impact on αt may be moderated or even masked by simultaneous technological advances.

Our model simulations, depicted in Panel (b) of Figure 7, provide key insights. When attribut-
ing the entire observed rise in αt solely to technological change—without any increase in pricing
power—the estimated average markup (blue line) still rises over time, accounting for a significant
share of the empirical upward trend.12 More specifically, in our quantitative analysis, techno-

12Importantly, the upward trajectory of the estimated markup should not be equated with growing market power.
Our model also reveals a notable negative relationship between estimated markups and firms’ incidence of negative
earnings. Highly productive, low-capital firms tend to invest heavily, often resulting in negative earnings. As shown by
the orange line in Figure A10 (appendix), the cross-sectional correlation between net earnings-to-sales ratios and esti-
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logical factors account for approximately 42.9% of the markup increase between 1980 and 2016.
However, notable discrepancies remain between our model’s predictions and empirical trends.
For instance, while our model attributes most of the markup growth to the 1990s, empirical data
indicate that the trend began earlier, around the 1980s. Moreover, while our technology-driven
simulations cap markups at around 1.40, observed markups reach as high as 1.60. These discrep-
ancies point to additional drivers beyond technology—such as changes in competitive dynamics,
regulatory shifts, or firm-level strategic behavior.

This becomes even clearer when examining markup percentiles, as shown in Panel (c) of Fig-
ure 7. Under the assumption that all changes stem from technology, our estimates show rising
markups across percentiles, with the sharpest increase at the 90th percentile. Yet, the patterns
are similar across the distribution, reflecting uniform exposure to technological change. This
contrasts with findings by De Loecker, Eeckhout and Unger (2020). As seen in Graph (d), in the
data, lower-percentile markups remain stable over time, meanwhile, the 90th percentile expe-
riences a dramatic rise to levels as high as 2.6. This divergence strongly suggests that factors
beyond technology—including rising market concentration, shifts in strategic pricing, and reg-
ulatory changes—are integral to understanding the full scope of markup dynamics.

Our analysis complements the institutional explanation advancedbyThomasPhilippon (2019),
who attributes rising markups and market concentration in the U.S. to regulatory choices, con-
trasting them with European patterns. Philippon argues that in industries such as telecoms, air-
lines, and broadband, European consumers enjoy better prices and services despite similar tech-
nologies, thanks to stricter regulatory oversight. This suggests that policy differences, rather than
technological determinism, largely drive the divergence. However, if economies of scale and tech-
nological innovation explain a substantial share of the markup rise, Europe’s cautious regulatory
approach—while successful in preserving competition—may inadvertently inhibit transformative
innovations. Our findings thus shift the focus from a pure concentration story to one where tech-
nological forces could be a dominant factor, calling for policy strategies that balance efficiency
gains from technological change with the need to curb excessive market power.

6 Conclusion

Using firm-level data on the accounts of all publicly traded firms, our study documents a signif-
icant shift in the shape of corporate production functions since the 1980s, moving from the tra-

matedmarkups has shifted from positive to negative over the past five decades. Post-1980s, this correlation stabilizes at
around -0.1 and is statistically significant at the 99% confidence level. This trend is closely tied to the rising importance
of intangible capital investment, proxied by net XGSA.
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ditional concave form to a sigmoidal (convex-concave) structure. This evolution, characterized
by an increasing importance of the convexity component, challenges the conventional assump-
tions of firm production behavior embedded in standard macroeconomic models. Our analysis,
conducted across a wide range of industries and countries, suggests that this transformation is
not limited to specific sectors or regions but represents a broader, global change in production
dynamics.

Our findings open several avenues for future research. First, further studies could extend this
analysis to private firms, as our current dataset is limited to publicly traded companies. Private
firms, which tend to be smaller and less capital-intensive, may exhibit different production dy-
namics, and including them could provide a more comprehensive picture of the evolution in pro-
duction functions. Second, while our study focuses on the convexity-concavity structure of pro-
duction, future research could investigate how these changes impact other firm behaviors, such
as innovation, investment in intangibles, and competitive strategies. Understanding how con-
vex production environments influence firms’ strategic choices could yield insights into broader
economic trends, including market concentration and the rise of superstar firms. Third, future
research could explore the role of economic policies and institutional factors in shaping the ob-
served shifts in production function shapes. Investigating how tax policies, labor regulations, and
access to capital influence the adoption of convex production technologies across different coun-
tries could provide policymakers with valuable tools tomanage economic growth and promote ef-
ficient resource allocation. Lastly, while our model incorporates capital adjustment costs, future
studies could developmore nuanced frameworks that account for other forms of adjustment fric-
tions, such as labor mobility or entry-exit barriers. Incorporating these complexities could yield
a deeper understanding of the welfare implications associated with the changing production en-
vironment, particularly in how these factors affect the cyclical dynamics of firm profitability and
market structure.
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Figure 1: The Rise of Firms with Negative Net Earnings

Notes: Graph (A) presents the time-series plot of the fraction of unprofitable public firms. In each year, we count the
number of firms with negative profits and divide it by the total number of firms. We use two different profitability
measures – gross profits (Compustat data item GP) and net earnings (Compustat data item NI) – and two different
aggregating approaches – weighted and unweighted. The weight is computed as the economy’s output share of the
industry that a firm belongs to. Data is obtained from Compustat. Graph (B) presents the time-series plot of the fraction
of unprofitable IPOs. In each year, we count the number of IPOs with negative net earnings and divide it by the total
number of IPOs. The information related to corporate earnings is measured at the most recent twelve months before
going public. The share of IT stocks is computed as the relative ratio of IT-related IPOs to total IPOs in each year. Data
is obtained from Jay Ritter’s personal website. Graph (C) presents the time-series plot of the fraction of unprofitable
public firms for a global dataset Compustat Global. We adopt the same measures as Panel (A). Graph (D) presents the
binscatter plot between the fraction of firms with negative net earnings and log real GDP per capita across different
countries. Real GDP per capita is obtained from the Penn World Table (PWT) and computed as output-side constant-
price real GDP divided by total population.

(a) US (b) IPO

(c) Global (d) cross-country heterogeneity
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Figure 2: Long-run Changes in Corporate Production Function: Baseline Evidence

Notes: Graph (a) shows the estimated cross-sectional convexity-concavity threshold using Bayesian Markov Chain
Monte Carlo (MCMC) estimationmethod. The blue solid line indicates the time-series in natural log scale, while the red
dashed line shows the same values inmillion U.S. dollars. Graph (b) shows the estimated degree of return-to-scale, and
the orange and green lines indicate αH

t and αL
t , respectively. The band shows the 95% credible interval approximated

with two times posterior standard deviations. The baseline model specification is shown in Equation (11) with y being
total output (Compustat data item SALE) and k the sum of physical capital (Compustat data item PPENT) and intangible
capital measured by Peters and Taylor (2017). We correct for the possible endogeneity issue by using Levinsohn and
Petrin (2003) approach. Data is obtained from Compustat.

(a) threshold (b) return-to-scale
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Figure 3: Long-run Changes in Corporate Production Function: Alternative Indicators

Notes: Graph (a) presents the percentile position of the estimated threshold over time. For each year t, we compute
the relative rank of the convexity-concavity threshold as k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution
function of total capital, and k̄t is the cross-sectional convexity-concavity threshold usingBayesianMarkovChainMonte
Carlo (MCMC) estimationmethod. Graph (b) presents an averagemeasure of returns-to-scale, calculated as αH × k̄pc +

αL × (1 − k̄pc). Graph (c) provides a measure of the relative importance of convexity versus concavity in production,

calculated as the ratio convexity
concavity =

αH×k̄pc

αL×(1−k̄pc)
. Total output y is measured as Compustat data item SALE and capital stock

k is the sum of physical capital (Compustat data item PPENT) and intangible capital, where we measure the stock of
intangible capital by following Peters and Taylor (2017). Data is obtained from Compustat.

(a) average return-to-scale (b) relative importance

41



Figure 4: Trends in Average Return-to-scale Across Industries

Notes: This figure presents an average measure of returns-to-scale for different industries, calculated as αH × k̄pc +

αL × (1 − k̄pc). For each year t and each industry, we compute the relative rank of the convexity-concavity threshold
as k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution function of total capital, and k̄t is the cross-sectional
convexity-concavity threshold using Bayesian Markov Chain Monte Carlo (MCMC) estimation method. The industry
classification follows Fama-French 10-industry approach. Total output y is measured as Compustat data item SALE and
capital stock k is the sum of physical capital (Compustat data item PPENT) and intangible capital, where we measure
the stock of intangible capital by following Peters and Taylor (2017). Data is obtained from Compustat.
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Figure 5: Trends in Average Return-to-scale Across Countries

Notes: This figure presents an average measure of returns-to-scale for different countries, calculated as αH × k̄pc +

αL × (1 − k̄pc). For each year t and each country, we compute the relative rank of the convexity-concavity threshold as
k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution function of total capital, and k̄t is the cross-sectional
convexity-concavity threshold using BayesianMarkov ChainMonte Carlo (MCMC) estimationmethod. Total output y is
measured as Compustat data item SALE and capital stock k is the sum of physical capital (Compustat data item PPENT)
and intangible capital, where we construct the stock of intangible capital by following Peters and Taylor (2017). Data is
obtained from Compustat Global.
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Figure 6: Binscatter Plot between Convexity-Concavity Threshold and Share of FirmswithNeg-
ative Net Earnings

Notes: This figure presents the binscatter plot between the industry-level turning point for the convexity-concavity pro-
duction function and the share of firmswith negative earnings. The red dashed line represents the linear-fit regression.
Specifically, for each year and each industry, we obtain the empirical measures of turning point with our baseline ap-
proach. In addition, for each industry in each year, we count the number of firms with negative profits and divide it by
the total number of firms to obtain the industry-level share of firms with negative net earnings. Data is obtained from
Compustat.
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Figure 7: Quantitative Exercises: Data v.s. Model

Notes: This figure illustrates the time series of the share of unprofitable firms, markup, and markup distributions,
as calculated from both the empirical data and the model. For each year, we determine the proportion of firms with
negative net earnings by dividing thenumber of firms reporting losses by the total number of firms. Firm-levelmarkups
are estimated following themethodology of De Loecker, Eeckhout and Unger (2020), after which we compute the sales-
weighted average with 10-year rolling window to be consistent with our baseline threshold measure.
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Figure 8: FirmHeterogeneity, Investment Decisions, and Net Earnings

Notes: This figure depicts the value function, investment decisions, and net earnings for firms across different levels
of productivity and capital stock. The subscript of productivity z increases with the firm’s productivity level. Details on
the model setup and parameter choices can be found in Section D of the appendix.
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Table 1: Reduced-form Evidence: Convexity-Concavity Threshold and Share of Firmswith Neg-
ative Net Earnings

Notes: This table presents the association between industry-level convexity-concavity threshold and the share of firms
with negative earnings with different fixed-effectmodel specifications. Specifically, for each year and each industry, we
obtain the empirical measures of turning point with our baseline approach. In addition, for each industry in each year,
we count the number of firms with negative profits and divide it by the total number of firms to obtain the industry-
level share of firmswith negative net earnings. Original data used in this table is at the industry-year level and obtained
from Compustat. T-statistics are in parentheses. *, **, and *** represent results significant at the 10%, 5%, and 1% levels,
respectively. Standard errors are clustered at the industry level.

share of firms with negative earnings

(1) (2) (3) (4)

Threshold 0.012*** 0.007* 0.019*** 0.010***
(3.674) (1.786) (7.388) (3.525)

Year Yes Yes
Industry Yes Yes

N 420 420 420 420
Adjusted R2 0.029 0.070 0.695 0.799
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Table 2: Overview of Time Trends Across Baseline, Industries, and Countries

Notes: This table summarizes the time trend coefficient for our baseline analysis, industry-level evidence, and global
investigation. Threshold k is the cross-sectional convexity-concavity threshold using Bayesian Markov Chain Monte
Carlo (MCMC) estimationmethod. Threshold in Percentile kpc presents the percentile position of the estimated thresh-
old over time. For each year t, we compute the relative rank of the convexity-concavity threshold as k̄pc = F̂k(k̂t),
where F̂k is the empirical cumulative distribution function of total capital. Average returns-to-scale is calculated as
αH × k̄pc + αL × (1 − k̄pc). The relative importance of convexity versus concavity is calculated as the ratio convexity

concavity =

αH×k̄pc

αL×(1−k̄pc)
. αH and αL are the estimated degrees of return-to-scale before and after the threshold. Total output y is

measured as Compustat data item SALE and capital stock k is the sum of physical capital (Compustat data item PPENT)
and intangible capital, where we measure the stock of intangible capital by following Peters and Taylor (2017). Data is
obtained from Compustat. T-statistics are in parentheses. *, **, and *** represent results significant at the 10%, 5%, and
1% levels, respectively.

Time-Trend Estimates Threshold Threshold In Percentile Average Return-to-scale Convexity/Concavity

Aggregate Evidence Baseline 0.146*** 0.012*** 0.001*** 0.051***
(25.506) (8.707) (6.066) (7.729)

Industry Evidence

Consumer Nondurables 0.055*** 0.0016 0.0016** 0.0050*
(6.30) (1.56) (2.93) (1.86)

Consumer Durables 0.097*** 0.0058*** -0.0021** 0.0073*
(17.87) (5.80) (-2.02) (1.84)

Manufacturing 0.10*** 0.0046*** 0.0052* 0.0083***
(26.15) (7.45) (1.72) (5.57)

Energy 0.052*** -0.0081*** 0.00035 -0.088***
(4.47) (-6.08) (0.66) (-3.59)

Business Equipment 0.11*** 0.0064*** 0.00039 0.022***
(17.73) (4.72) (0.90) (2.86)

Telephone and Television 0.066*** -0.0032 0.0055* -0.025***
(3.63) (-1.31) (1.81) (-2.56)

Wholesale and Retail 0.057*** -0.00040 -0.004*** -0.0036**
(13.14) (-1.31) (-6.50) (-3.26)

Healthcare 0.13*** 0.0075*** 0.0059*** 0.24***
(6.24) (8.66) (7.46) (7.13)

Utilities 0.094*** 0.0013*** 0.00052* 0.0027***
(17.05) (4.86) (1.87) (6.25)

Other 0.14*** 0.00043*** -0.00075 0.66***
(32.57) (9.99) (-1.07) (9.37)

Global Evidence

Australia 0.047 0.002 0.027*** 0.130***
(1.394) (0.687) (16.170) (4.656)

Canada 0.096*** 0.015*** 0.002 -0.002
(5.912) (5.569) (0.832) (-0.062)

China 0.040*** -0.005*** 0.016*** 0.006*
(2.982) (-3.468) (8.114) (1.915)

France 0.013 0.016*** 0.000 -0.054
(0.457) (3.967) (0.137) (-1.284)

Germany -0.002 0.010*** 0.003** -0.003
(-0.233) (6.201) (3.036) (-0.899)

India 0.034* 0.002 0.017*** -0.004
(1.696) (0.907) (21.208) (-1.491)

Japan 0.027 0.003*** 0.002* 0.003
(1.621) (4.713) (1.770) (1.175)

Korea 0.213*** 0.002*** -0.004*** 0.000
(8.282) (4.938) (-4.755) (-0.364)

Sweden -0.041* 0.012*** -0.011*** -0.006
(-1.785) (4.084) (-4.379) (-0.864)

Thailand 0.000 -0.001 0.006** 0.001
(0.008) (-0.463) (2.761) (0.159)

UK -0.135*** -0.013** -0.001 0.056
(-3.084) (-2.030) (-0.640) (1.480)
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A Implementation details of Estimating the Shape of Corporate Pro-
duction Function

A.1 First-step BayesianMCMC

Bayesian MCMC is a simulation-based sampling method that has gained significant traction in
economic and financial research. MCMC offers an efficient framework for estimating continuous
structural breaks, which are inherently more complex than discrete ones. For high-dimensional
joint posterior distributions, the MCMC sampler iteratively samples from each univariate condi-
tional posterior, progressively constructing the overall distribution. Under mild regularity con-
ditions, these conditionally sampled densities converge to approximate the target joint posterior
distribution.1

Inparticular, denote theobserveddata asYt = {Yit, i = 1, . . . , Nt} andKt = {Kit, i = 1, . . . , Nt}.
The joint likelihood f (Yt,Kt | θt) is proportional to

1√
2πσ2

H

n1√
2πσ2

L

n2
exp

{
−

∑i:Ki,t<Kt
[log Yi,t − (aH

t + ωi,t + αH
t log Ki,t)]

2

2σ2
H

−
∑i:Ki,t≥Kt

[log Yi,t − (aL
t + ωi,t + αL

t log Ki,t)]
2

2σ2
L

}
(A1)

where n1 and n2 are the number of observations with Ki,t < Kt and Ki,t ≥ Kt for a given Kt.
Bayesian statistics differ from frequentist approaches by treating parameters as random vari-

ables, where prior distributions capture the researchers’ prior beliefs about these parameters.
Denote the priors on parameters as π(θ). The posterior is then proportional to f (Yt,Kt | θt)π(θ).
Since MCMC draws from posterior distributions, interval estimates are readily available. For a
point estimate θ̂, we approximate its credible interval as [θ̂ − 2ŝ, θ̂ + 2ŝ], where ŝ represents the esti-
mated posterior standard deviation. For further details onMCMC in structural break applications,
please refer to Bradley P Carlin, Alan E Gelfand and Adrian FM Smith (1992) and Stephens (1994).
In our estimation, we tune the proposal density with up to 2,000 iterations and generate 20,000
Monte Carlo samples using a Metropolis-Hastings embedded Gibbs sampler.

A.2 Second-step TFP estimation

In production function estimation, endogeneity is a critical issue that can bias and skew total fac-
tor productivity (TFP) estimates. This problem arises because firms’ input choices, such as labor,
capital, and materials, are often responsive to unobserved productivity shocks. For example, a

1For an in-depth discussion of Bayesian MCMCmethods, refer to Erica X.N. Li, Haitao Li, Shujing Wang and Cindy
Yu (2019) and Erica X.N. Li, Guoliang Ma, Shujing Wang and Cindy Yu (2021).
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firm experiencing a positive productivity shock (i.e., shock to ω) may increase input levels, cre-
ating simultaneity bias. Traditional ordinary least squares (OLS) cannot disentangle the effect of
productivity shocks from the true contribution of inputs to output, often leading to inflated or
deflated coefficients.

To address this endogeneity, Levinsohn and Petrin (2003) proposed a method that uses inter-
mediate inputs, such as materials or energy, as proxies to control for unobserved productivity
shocks. This approach assumes that intermediate inputs are more flexible and responsive to pro-
ductivity changes than capital, which is typically fixed in the short term. By conditioning on in-
termediate inputs, the Levinsohn and Petrin method accounts for productivity shocks in input
decisions, isolating the actual effect of capital and labor on output. This adjustment results in
more accurate production function estimates, essential for reliable TFP measurement. We adopt
this approach by using production costs (Compustat data item COGS) as a proxy for materials due
to the unavailability of direct measures like electricity or fuel in our firm-level data. Additionally,
we implement the Olley and Pakes (1996) approach as a robustness check, using our constructed
total investment and firm age as control variables.

B Relationship among Return-to-scale, Fixed Cost andMarginal Cost

B.1 Cost structure and return-to-scale

Here we use an example to formally establish this point. By definition, a production function F
exhibits increasing returns to scale if F(λK, λL) > λF(K, L), for any λ > 1. In cost terms, this
condition implies that total cost satisfies TC(λq) < λ · TC(q). Firms generally face two categories
of costs. Fixed costs (FC) are incurred independently of output and typically represent one-time
expenditures. Variable costs (VC), by contrast, depend on the quantity produced. Due to learning
effects or scale economies, variable costsmay decreasewith output, leading to decliningmarginal
costs. The total cost function canbe expressed asC(q) = FC+

´ q
0 MC(z) dz, whereMC(q) denotes

the marginal cost of producing quantity q. For analytical convenience, assume that marginal cost
follows the functional form MC(q) = c · q−α, where c > 0 and 0 < α < 1. The parameter α governs
the rate of cost decline: the larger α, the faster marginal cost decreases with output.

To obtain total cost, we first compute variable cost by integrating the marginal cost function
VC(q) =

´ q
0 c · z−αdz = c

1−α q1−α. Adding fixed cost yields TC(q) = FC + c
1−α q1−α. Dividing total

cost by output gives average cost AC(q) = TC(q)
q = FC

q + c
1−α q−α. Both components decline with

output: the fixed cost term shrinks as it is distributed over more units, and the variable cost term
falls due to diminishing marginal cost. Hence, average cost decreases with output, reflecting in-
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creasing returns to scale. To verify this formally, consider the scaled cost expression: λ · TC(q) =
λFC + λ · c

1−α q1−α. In comparison, we compute TC(λq) = FC + c
1−α (λq)1−α = FC + c

1−α λ1−αq1−α.
Since λ1−α < λ for λ > 1 and 0 < α < 1, the second term in TC(λq) grows less thanproportionally
in λ. If FC is sufficiently large, this sublinear growth becomesmore pronounced, so the inequality
TC(λq) < λ · TC(q) holds, confirming the presence of increasing returns to scale.

B.2 Cost structure and convex-concave threshold

Consider a convex-concave production function F(x) that features increasing marginal returns
in the initial phase and decreasing marginal returns beyond a certain threshold. Specifically, the
function exhibits a convex region (increasing returns to scale) when x ≤ x∗ and a concave region
(decreasing returns to scale) when x > x∗. In the convex region, production benefits from scaling
advantages, such as those present in a startup phase. In the concave region, production becomes
less efficient, possibly due to congestion or coordination issues at high input levels.

Mathematically, theproduction function is definedas F(x) =

xα, if x ≤ x∗, α > 1

x∗ ·
( x

x∗
)β , if x > x∗, β < 1

.

The threshold x∗ represents the input level at which the curvature of the production function
changes. The corresponding output threshold is y∗ = F(x∗) = (x∗)α.

The firm’s original cost structure includes a fixed cost FC, which is independent of output, and
a variable cost VC that reflects the cost of inputs required to produce a given output y. Assuming
an input price of w = 1 for simplicity, the variable cost can be expressed as VC(y) = F−1(y),
where F−1(y) is the inverse of the production function.

For outputs less than or equal to y∗, the inverse function takes the form F−1(y) = y1/α, imply-

ing that VC(y) = y1/α. For outputs exceeding y∗, the inverse is F−1(y) = x∗ ·
(

y
y∗

)1/β
, leading to

a variable cost of VC(y) = x∗ ·
(

y
(x∗)α

)1/β
.

Marginal cost is the derivative of variable cost with respect to output: MC(y) = d
dy VC(y).

When y ≤ y∗, this derivative becomes MC(y) = 1
α y1/α−1. Since α > 1, marginal cost decreases

with output, reflecting economies of scale.
When y > y∗, marginal cost becomes MC(y) = x∗

β(x∗)α y1/β−1. Because β < 1, marginal cost
increases with output, indicating diseconomies of scale.

Suppose technological improvements reduce variable costs by a factor k, where 0 < k < 1. The
new variable cost becomes VCnew(y) = k · VCold(y). As a result, the new marginal cost is scaled
accordingly: MCnew(y) = k · MCold(y). For y ≤ y∗, the new marginal cost becomes MCnew(y) =
k
α y1/α−1, and for y > y∗, MCnew(y) = kx∗

β(x∗)α y1/β−1.
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The threshold y∗ marks the point where marginal cost transitions from decreasing to increas-
ing. In the original setup, this threshold is given by y∗ = (x∗)α. After the cost reduction, the new
economic threshold y∗new is determined by the intersection of the new marginal cost curves.

Although the technical threshold x∗ remains unchanged (since k scales both marginal cost re-
gions proportionally), the economic threshold shifts. Because lower marginal cost makes it more
attractive to produce larger output before encountering diseconomies of scale, firms will tend to
operate at a higher output level before entering the concave region of the production function.

An increase in fixed costs has no effect on the technical threshold x∗, as it does not affect the
production function’s curvature. However, there is an indirect effect: higher fixed costs encourage
firms to produce at larger scales in order to spread those costs overmore output. Nonetheless, the
switch point x∗ itself remains technically unchanged.

When both fixed costs increase and variable costs decrease, the effects combine in the follow-
ing way. A reduction in variable costs delays the onset of rising marginal cost, effectively extend-
ing the convex region (increasing returns to scale) in economic terms. Simultaneously, higher
fixed costs incentivize firms to scale up production, although the technical threshold x∗ will only
shift if the production function itself changes—that is, if the parameters α or β are altered due to
innovation.

C Model Proof

C.1 Proof of Production Function Shape Representation

Proof. The firm’s optimization problem is shown as follows:

P̃tỸt − WtLt =

(
1

H̃t

)− 1
εt (

Ỹt
)1− 1

εt − WtLt (A2)

=

(
1

H̃t

)− 1
εt
(

Ãt

(
Kγt

t L1−γt
t

)st
)1− 1

εt − WtLt (A3)

Given the market wage wt, the first order condition with respect to labor Lt gives:

L̃t =

[
H̃t

[(
1 − 1

εt

)
(1 − γt)st

]εt (
ÃtK

γtst
t

)εt−1
] 1

εt−(1−γt)st(εt−1)

(A4)

In this way, we can rewrite the optimized sales Yt ≡ P̃tỸt as below:
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Yt ≡ P̃tỸt =

[
H̃t

(
1 − 1

εt

)
(1 − γt)st

] (εt−1)(1−γt)st
εt−(1−γt)st(εt−1)

Ã
εt−1

εt−(1−γt)st(εt−1)
t K

(εt−1)γt st
εt−(1−γt)st(εt−1)
t

≡ Z̃1−αt
t Kαt

t (A5)

where

αt ≡
γtst

(
1 − 1

εt

)
1 − (1 − γt) st

(
1 − 1

εt

) (A6)

Z̃t ≡
[

H̃t

(
1 − 1

εt

)
(1 − γt)st

] (1− 1
εt

)(1−γt)st

1−st(1− 1
εt

)
Ã

1− 1
εt

1−st(1− 1
εt

)

t (A7)

C.2 Proof of Lemma 1

Proof. We set up the current-value Hamiltonian function as below:

H(K, I, q) ≡ F(K)− I − G(I, K) + q(I − δK), (A8)

where q is the Lagrangian multiplier associated with capital stock dynamics. For each t ≥ 0 we
maximizeH with respect to the control variable I, which gives us

1 + GI(I, K) = q

Next, we partially differentiateH with respect to the state variable and set the result equal to
rq − q̇, where r is the discount rate:

∂H
∂K

= FK(K)− GK(I, K)− δq = rq − q̇. (A9)

The standard infinite horizon transversality condition says that irrespective of the time path
of the capital stock, optimality requires that the present value of the shadow price itself, when
discounted by r + δ, is asymptotically zero, i.e.,

lim
t→∞

qte−
´ t

0 (rτ+δ)dτ = 0. (A10)
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In this way, qt can be interpreted as the shadow price (measured in current output units) of
capital along the optimal path. Multiplying by e−

´ t
0 (rτ+δ)dτ on both sides of the previous equation,

we get the following:

qt =

ˆ ∞

t
[FK(Ks)− GK(Is, Ks)]e−

´ s
t (rτ+δ)dτds > 0. (A11)

As the first order condition shows that 1 + GI(I, K) = q, then we can show that the optimal
investment I is an implicit function of the shadow price of capital q and the state variable Kt, i.e.,
It ≡ M (qt, Kt). In addition, we can easily show thatM is a strictly increasing function of q:

∂It

∂qt
=

1
GI I(M(qt, Kt), Kt)

> 0 (A12)

As G is homogeneous of degree 1, we can rewrite It ≡ M (qt, Kt) = m (qt)Kt, where again m
is an increasing function of q.

With the definitions onA(K, L) and B(I, K), we can rewrite π as follows:

π = F(K)− G(I, K)− I

= A(K) + FKK + B(I, K)− GI I − GKK − I

= A(K) + B(I, K) + (FKK − GKK)− (1 + GI) I

= A(K) + B(I, K) + (FKK − GKK)− (1 + GI)m(q)K

= A(K) + B(I, K) + (FKK − GKK)− (1 + GI)m
(ˆ ∞

t
e−
´ s

t rτdτ [FKs Ks − GKs Ks] ds
)

K(A13)

As G is homogeneous of degree 1, we have B(I, K) = 0. If F is a convex function, then we have
A(K) = F(K) − FK(K)K < 0. More importantly, as F is convex, then it means that FK < FKs if
K < Ks. If the degree of convexity is sufficiently large and K is small such that GI is large and GK

is small, then we have (FKK − GKK)− (1 + GI)m
(´ ∞

t e−
´ s

t rτdτ [FKs Ks − GKs Ks] ds
)

K < 0 as m is a
strictly increasing function. In this case, the net earnings become negative, i.e., π < 0.

C.3 Proof of Lemma 2

Proof. The value of the firm as seen from time t is

Vt =

ˆ ∞

t
(F(Kτ)− G(Iτ, Kτ)− Iτ) e−

´ τ
t rsdsdτ (A14)
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Consequently, when moving along the optimal path,

Vt = V∗(Kt, t) =
ˆ ∞

t
(A(Kτ) + B(Iτ, Kτ)) e−

´ τ
t rsdsdτ (A15)

+

ˆ ∞

t
([FK − GK]Kτ − (1 + GI)Iτ) e−

´ τ
t rsdsdτ

=

ˆ ∞

t
(A(Kτ) + B(Iτ, Kτ)) e−

´ τ
t rsdsdτ + qtKt

Isolating qt, it follows that

qm
t ≡ qt =

Vt

Kt
− 1

Kt

ˆ ∞

t
(A(Kτ) + B(Iτ, Kτ)) e−

´ τ
t rsdsdτ (A16)

D Quantitative Model Setup

Time is discrete and is indexed by t = 1, 2, . . .. The horizon is infinite. At time t, a positive mass
of price-taking firms produce a homogeneous good by means of the production function yi,t =

zi,t

(
kβ

i,tl
1−β
i,t

)αH
t ×Iki,t<k̄t

+αL
t ×Iki,t≤k̄t . With ki,t we denote total capital, li,t as labor, β is the capital share,

and zt is the idiosyncratic random disturbance. As discussed
The dynamics of the idiosyncratic component zt is described by

log zt+1 = ρz log zt + σzεz,t+1 (A17)

with εz,t ∼ N(0, 1) for all t ≥ 0. The conditional distribution of zt will be denoted as H(zt+1|zt).
Firms discount future profits by means of the time-invariant factor 1

R , R > 1. Adjusting the
capital stock by x bears a cost g(x, k). Capital depreciates at the rate δ ∈ (0, 1).

We assume that the demand for the firm’s output and the supply of capital are infinitely elastic
andnormalize their prices at 1. Operatingfirms incur a cost c f > 0, drawn from the common time-
invariant distribution G. Firms that quit producing cannot re-enter themarket at a later stage and
recoup the undepreciated portion of their capital stock, net of the adjustment cost of driving it to
0.

Every period there is a constant mass M > 0 of prospective entrants, each of which receives
a signal q about her productivity, with q ∼ Q(q). Conditional on entry, the distribution of the id-
iosyncratic shock in the first period of operation is H(z′|q), strictly decreasing in q. Entrepreneurs
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that decide to enter the industry pay an entry cost ce ≥ 0.

The Incumbent’s Optimization Program Upon exit, a firm obtains a value equal to the unde-
preciated portion of its capital k, net of the adjustment cost it incurs in order to dismantle it, i.e.
Vx(k) = k(1 − δ)− g [−k(1 − δ), k].

Then, the start-of-period value of an incumbent firm is given by the function V(z, k) which
solves the following functional equation:

V(z, k) = π(z, k) +
ˆ

max
{

Vx(k), Ṽ(z, k)− c f
}

dG(c f ) (A18)

where
Ṽ(z, k) = max

x
−x − g(x, k) +

1
R

ˆ
V(z′, k′)dH(z′|z) (A19)

subject to k′ = k(1 − δ) + x.

Entry For an aggregate state λ, the value of a prospective entrant that obtains a signal q is

Ve(q) = max
k′

−k′ +
1
R

ˆ
V(z′, k′)dH(z′|q) (A20)

She will invest and start operating if and only if Ve(q) ≥ ce.

Recursive Competitive Equilibrium For given initial condition Γ0, a recursive competitive equi-
librium consists of (i) value functions V(z, k), Ṽ(z, k) and Ve(q), (ii) policy functions x(z, k), k′(q),
and (iii) bounded sequences of incumbents’ measures {Γt}∞

t=1, and entrants’ measures {Et}∞
t=0

such that, for all t ≥ 0,

1. V(z, k), Ṽ(z, k), and x(z, k) solve the incumbent’s problem;

2. Ve(q) and k′(q) solve the entrant’s problem;

3. Capital market clears;

4. The entrant measure Et+1 and incumbent measure Γt+1 satisfy their respective laws of mo-
tion

Functional Forms Investment adjustment costs are modeled as a sum of a fixed portion and a
convex portion:

g(x, k) = χ(x)c0k + c1

( x
k

)2
k, c0, c1 ≥ 0, (A21)
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where χ(x) = 0 for x = 0 and χ(x) = 1 otherwise.

Calibration The parameter values used in our quantitative exercise are shown in the following
table.

Table A1: Calibration

Parameter Description Value
1
R annual discount factor 0.9615
δ annual depreciation rate 0.10
β capital share 0.36
c f fixed cost 0.75
ce entry cost 1.5
c1 convex adjustment cost parameter 0.25
c0 non-convex/fixed adjustment cost 0.15
ρz autocorrelation coefficient 0.62
σz std. dev. of shocks 0.42

In our model, the markup here is computed exactly as in De Loecker, Eeckhout and Unger
(2020), which is the relative ratio of price per unit to marginal production cost.

E Additional Figures and Tables
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Figure A1: The Rise of Firms with Negative Net Earnings: Ten Different Industries

Notes: This figure presents the time-series plot of the fraction of unprofitable public firms in different industries. In
each year, for each industry, we count the number of firms with negative net earnings and divide it by the total number
of firms. Ten industries are defined as follows: Consumer Nondurables (SIC 0100-0999, 2000-2399, 2700-2749, 2770-2799,
3100-3199, 3940-3989); Consumer Durables (SIC 2500-2519, 2590-2599, 3630-3659, 3710-3711, 3714-3714, 3716-3716, 3750-3751,
3792-3792, 3900-3939, 3990-3999); Manufacturing (SIC 2520-2589, 2600-2699, 2750-2769, 2800-2829, 2840-2899, 3000-3099,
3200-3569, 3580-3621, 3623-3629, 3700-3709, 3712-3713, 3715-3715, 3717-3749, 3752-3791, 3793-3799, 3860-3899); Oil, Gas, and
Coal Extraction and Products (SIC 1200-1399, 2900-2999); Business Equipment (SIC 3570-3579, 3622-3622, 3660-3692, 3694-
3699, 3810-3839, 7370-7372, 7373-7373, 7374-7374, 7375-7375, 7376-7376, 7377-7377, 7378-7378, 7379-7379, 7391-7391, 8730-8734);
Telephone and Television Transmission (SIC 4800-4899);Wholesale, Retail, and Some Services (SIC 5000-5999, 7200-7299, 7600-
7699); Healthcare, Medical Equipment, and Drugs (SIC 2830-2839, 3693-3693, 3840-3859, 8000-8099); Utilities (SIC 4900-
4949); and Others. Data is obtained from Compustat.
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Figure A2: Average Firm Age

Notes: This figure presents the time-series plot of the average age for public companies in the US. A firm’s age is defined
as the year difference between the current year and the year that a certain firm first appears in the Compustat dataset.
The fraction of young firms is computed as follows. For each year, we count the number of firms with an age less than
5 and divide it by the total number of firms. Data is obtained from Compustat.
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Figure A3: The Rise of Firms with Negative Net Earnings: Different Stock Exchanges

Notes: This figure presents the time-series plot of the fraction of unprofitable public firms in different stock exchanges.
In each year, for each stock exchange, we count the number of firms with negative net earnings and divide it by the
total number of firms in that exchange. Data is obtained from Compustat.
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Figure A4: Potential Issues with Public Firms Only
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Figure A5: Long-run Changes in Corporate Production Function: Simulation Exercise

Notes: Graph (a) compares the simulated true and estimated structural breaks kt obtained from Bayesian MCMC. The
blue curve represents the true value, while the red represents the estimation. Graph (b) shows the corresponding
estimated slope coefficients, and the green and orange dashed lines indicate the true values: 1.3 and 0.7. The blue curve
represents the estimated time series β̂at and the red curve represents the estimated time series β̂et. Total output y is
measured as Compustat data item SALE and capital stock k is the sum of physical capital (Compustat data item PPENT)
and intangible capital, where we measure the stock of intangible capital by following Peters and Taylor (2017). Data is
obtained from Compustat.

(a) simulation: changepoint (b) simulation: slope coefficient
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Figure A6: Long-run Changes in Corporate Production Function: Alternative Functional Forms

Notes: Graphs (a) and (b) report the estimated structural breaks and slope coefficients for continuous production func-
tion shown as in Equation (13). Meanwhile, Graph (c) and (d) report the corresponding results for using the exponential
functional form shown as in Equation (14). Across all these model specifications, total output y is measured as Com-
pustat data item SALE and capital stock k is the sum of physical capital (Compustat data item PPENT) and intangible
capital, where we measure the stock of intangible capital by following Peters and Taylor (2017). Data is obtained from
Compustat.

(a) continuous function: changepoint (b) continuous function: slope coefficient

(c) exponential function: changepoint (d) exponential function: coefficient
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Figure A7: Long-run Changes in Corporate Production Function with Olley and Pakes (1996)
adjustment

Notes: Graph (a) shows the estimated degree of return-to-scale, and the orange and green lines indicate αH
t and αL

t ,
respectively. The band shows the 95% credible interval approximated with two times posterior standard deviations.
Graph (b) presents an average measure of returns-to-scale, calculated as αH × k̄pc + αL × (1 − k̄pc), where k̄pc denotes
the percentile position of the estimated threshold over time. For each year t, we compute the relative rank of the
convexity-concavity threshold as k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution function of total cap-
ital, and k̄t is the cross-sectional convexity-concavity threshold using Bayesian Markov Chain Monte Carlo (MCMC)
changepoint estimation method. Graph (c) provides a measure of the relative importance of convexity versus concav-
ity in production, calculated as the ratio convexity

concavity =
αH×k̄pc

αL×(1−k̄pc)
. The model specification is shown in Equation (11) with

y being total output (Compustat data item SALE) and k the sum of physical capital (Compustat data item PPENT) and
intangible capital measured by Peters and Taylor (2017). We correct for the possible endogeneity issue by using Olley
and Pakes (1996) approach. Data is obtained from Compustat.

(a) degree of return-to-scale

(b) average return-to-scale (c) convexity/concavity
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Figure A8: Long-run Changes in Corporate Production Function with Yu and Phillips (2018) ap-
proach

Notes: Graph (a) shows the estimated cross-sectional convexity-concavity threshold using Yu and Phillips (2018) esti-
mation method. The blue solid line indicates the time-series in natural log scale, while the red dashed line shows the
same values in million U.S. dollars. Graph (b) shows the estimated degree of return-to-scale, and the orange and green
lines indicate αH

t and αL
t , respectively. Data is obtained from Compustat.

(a) threshold (b) degree of return-to-scale
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Figure A9: Long-run Changes in Corporate Production Function: Industry-level Evidence

Notes: Panel (a) shows the estimated cross-sectional convexity-concavity threshold usingBayesianMarkovChainMonte
Carlo (MCMC) changepoint estimationmethod for different industries. Panel (b) presents the percentile position of the
estimated threshold over time. For each year t, we compute the relative rank of the convexity-concavity threshold as
k̄pc = F̂k(k̂t), where F̂k is the empirical cumulative distribution function of total capital. Panel (c) provides ameasure of

the relative importance of convexity versus concavity in production, calculated as the ratio convexity
concavity =

αH×k̄pc

αL×(1−k̄pc)
. Total

output y is measured as Compustat data item SALE and capital stock k is the sum of physical capital (Compustat data
item PPENT) and intangible capital, where we measure the stock of intangible capital by following Peters and Taylor
(2017). The industry classification follows Fama-French 10 industry definitions. Data is obtained from Compustat.

(a) threshold level
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(b) threshold in percentile
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(c) convexity/concavity

A22



Figure A10: Correlation betweenmarkup and netearnings

Notes: This figure presents the time-series plot of the cross-sectional correlation between markup and net earnings
or intangible capital investment. The shaded area represents the 99% confidence intervals. Data is obtained from
Compustat and definitions of markup and intangible capital investment are the same as before.
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Table A2: Top 50 Companies with Negative Net Earnings in 2019

Company Name Net Earnings Market Capitalization Industry
(in million US dollars) (in million US dollars)

Boeing Co -636 183373.2 Manufacturing
Vanjia Corp -0.041 122949 Construction
General Electric Co -4979 97520.92 Public Administration
Altria Group Inc -1293 92731.88 Manufacturing
Tesla Inc -862 75717.73 Manufacturing
Uber Technologies Inc -8506 51054.09 Transportation and Public Utilities
Dun & Bradstreet Corp -560 45586.05 Services
Workday Inc -480.674 42780.25 Services
Dow Inc -1359 40582.24 Manufacturing
Occidental Petroleum Corp -667 36846.36 Mining
Constellation Brands Inc -11.8 32946.64 Manufacturing
MercadoLibre Inc -171.999 28431.14 Services
Splunk Inc -336.668 24498.16 Services
Snap Inc -1033.66 23119.95 Services
Weyerhaeuser Co -76 22508.06 Manufacturing
Corteva Inc -959 22127.94 Agriculture, Forestry and Fishing
Palo Alto Networks Inc -81.9 21929.07 Services
Halliburton Co -1131 21484.66 Mining
Hess Corp -408 20374.04 Mining
Seagen Inc -158.65 19652.04 Manufacturing
Freeport-McMoRan Inc -239 19037.12 Mining
Concho Resources Inc -705 17311.63 Mining
Equifax Inc. -398.8 16982.54 Services
Roku Inc -59.937 16054.21 Manufacturing
OKTA INC -208.913 15703.8 Services
Live Nation Entertainment Inc -4.882 15273.85 Services
Biomarin Pharmaceutical Inc -23.848 15205.3 Manufacturing
RingCentral Inc -53.607 14664.17 Services
Lumen Technologies Inc -5269 14399.67 Transportation and Public Utilities
DocuSign Inc. -208.359 14230.25 Services
Western Digital Corp -754 14027.25 Manufacturing
Exact Sciences Corporation -83.993 13652.45 Services
Twilio Inc -307.063 13603.23 Services
Hologic Inc -203.6 13515.42 Manufacturing
Annaly Capital Management Inc -2162.865 13471.6 Finance, Insurance and Real Estate
Icahn Enterprises LP -1098 13165.86 Public Administration
Lyft Inc -2602.241 13017.68 Transportation and Public Utilities
CrowdStrike Holdings Inc -141.779 13008.99 Services
Alnylam Pharmaceuticals Inc -886.116 12920.69 Manufacturing
Noble Energy Inc -1512 12045.76 Mining
Slack Technologies Inc -571.058 11512.61 Services
Equitable Holdings Inc -1733 11490.76 Finance, Insurance and Real Estate
Datadog Inc -16.71 11197.5 Services
Zscaler Inc -28.655 10723.61 Services
Formula One Group - The Liberty Media Group -311 10647.7 Services
Chewy Inc -252.37 10640.27 Retail Trade
Pinterest Inc -1361.371 10623.01 Services
Coupa Software Inc -90.832 10398.85 Services
Coty Inc -3784.2 10106.28 Manufacturing
Darden Restaurants Inc -52.4 9983.653 Retail Trade
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